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1.1 Motivation

Why do we study calculus?
Calculus is an important branch of mathematics and is concerned with two basic oper-
ations called differentiation and integration. These operations are related and both
rely for their definitions on the use of limits.
We study calculus with some revision of A-level work. We introduce the basic concepts
of mathematical analysis.

1.2 Basics

Notation: We use the symbols N, Z, R for the set of natural numbers, integers and
real numbers, respectively:

N = {0, 1, 2, 3, . . . } Z = {0, 1, 2, 3, . . . } ∪ {−1,−2,−3,−4 . . . }

Given two real numbers a < b we use the following interval notations:

[a, b] = {x ∈ R|a ≤ x ≤ b},

1



2 1.2 Basics

[a, b) = {x ∈ R|a ≤ x < b},

(a, b] = {x ∈ R|a < x ≤ b},

(a, b) = {x ∈ R|a < x < b}.

We also use the notations

[a,+∞) = {x ∈ R|a ≤ x},

(a,+∞) = {x ∈ R|a < x},

(−∞, a] = {x ∈ R|x ≤ a},

(−∞, a) = {x ∈ R|x < a}.

Functions: We shall use notations like

f : [a, b] −→ R

to convey that f is a real-valued function defined for all a ≤ x ≤ b, i.e., f(x) is a real
number for all x ∈ [a, b]. In general, g : A −→ B conveys that g is a function with
domain A and range B, i.e., for all x ∈ A, g(x) ∈ B. g(x) is the value of g at x.

Definition (provisional): A function is a rule which assigns, to each real number
in its domain, some real number in its range.

1.2.1 Examples of functions

1. f1 : R −→ R, f1(x) = x

2. f2 : [0,+∞) −→ [0,+∞), f2(x) =
√
x

3. f3 : (0,+∞) −→ (0,+∞), f3(x) = 1
x

4.

f4 : R −→ R, f4(x) =

{
0 if x is rational
2 if x is irrational

5.

f5 :
(
−π

2
,
π

2

)
−→ R, f5(x) = tan(x) =

sin(x)

cos(x)
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Building new functions: Suppose

f, g : A −→ R.

Define
f + g : A −→ R

by (f + g)(x) = f(x) + g(x), the sum of f and g.

f − g : A −→ R

by (f − g)(x) = f(x)− g(x), the difference of f and g.

(f · g) : A −→ R

by (f · g)(x) = f(x) · g(x), the product of f and g.
If g(x) 6= 0 for all x ∈ A, we also define(

f

g

)
: A −→ R

by
(

f
g

)
(x) = f(x)

g(x)
, the quotient of f and g.

1.2.2 Examples

f : R −→ R, f(x) = x2

g : R −→ R, g(x) =
1

1 + x2

(f ·g)(x) = f(x) ·g(x) = x2 · 1
1+x2 = x2

1+x2 ,
(

f
g

)
(x) = f(x)

g(x)
= x2

1
1+x2

= x2(1+x2) = x4 +x2.

1.3 Preliminary algebra

1.3.1 Polynomial functions

Definition: A polynomial of degree n is a function f(x) of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0.

Here n is an integer n > 0, called the degree of the polynomial f .

Definition: A polynomial equation is an equation of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = 0.

It is satisfied by particular values of x, called the roots of the polynomial.
For n = 1, (linear case) we have

a1x+ a0 = 0 ⇒ x = −a0

a1

.

For n = 2, (quadratic case) we have

a2x
2 + a1x+ a0 = 0 ⇒ x± =

−a1 ±
√
a2

1 − 4a2a0

2a2

.
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Theorem 1.1: An n-th degree polynomial equation has exactly n roots.

1.3.2 Factorising polynomials

We have just seen that a polynomial equation can be written in any of the following
alternative forms

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0,

f(x) = an(x− α1)
m1(x− α2)

m2 · · · (x− αr)
mr ,

f(x) = an(x− α1)(x− α2) · · · (x− αn),

with m1 +m2 + · · ·+mr = n.

Example 1.1: The roots of a quadratic polynomial f(x) = a2x
2 + a1x + a0 = 0 are

α1 and α2, such that

α1 + α2 = −a1

a2

α1 · α2 =
a0

a2

.

1.3.3 Trigonometric identities

Single-angle identities:

cos2 θ + sin2 θ = 1,

1 + tan2 θ = sec2 θ,

cot2 θ + 1 = csc2 θ.

Compound-angle identities:

cos(A±B) = cosA cosB ∓ sinA sinB,

sin(A±B) = sinA cosB ± cosA sinB.

Double-angle identities:

cos(2A) = 1− 2 sin2A,

sin(2A) = 2 sinA cosA,

1.4 Coordinate geometry

Equation of a straight-line: The standard form for a straight-line graph is

y = mx+ c,

representing a linear relationship between the independent variable x and the dependent variable y.
The slope m is equal to the tangent of the angle the line makes with the x-axis and c
is the intercept of the y-axis. An alternative form for the equation of a straight line is

ax+ by + k = 0,

with m = −a
b

and c = −k
b
. This form treats x and y on a more symmetrical basis, the

intercepts on the two axes being −k
a

and −k
b
, respectively.
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Equation of a line that passes through (x1, y1) and (x2, y2): Given two points
(x1, y1) and (x2, y2), we find the equation of the line that passes through both of them
as follows. The slope is given by

m =
y2 − y1

x2 − x1

and

y − y1 = m(x− x1)

or

y − y2 = m(x− x2)

is the desired linear relationship between y and x.

Example 1.2: Find the equation of the line that passes through the points (1, 2) and
(5, 3).
Do as an exercise at home.

1.5 Partial fractions

Example 1.3: Express the function

f(x) =
4x+ 2

x2 + 3x+ 2

in partial fractions.
We write

f(x) =
g(x)

h(x)
=

4x+ 2

x2 + 3x+ 2
.

In this case the denominator h(x) has zeros at x = −1 and x = −2; Thus the partial
fraction expansion will be of the form

f(x) =
4x+ 2

x2 + 3x+ 2
=

A1

x+ 1
+

A2

x+ 2
⇒ 4x+2 = A1(x+2)+A2(x+1) ⇒ A1 = −2 A2 = 6.

Example 1.4: If the denominator has repeated factors, the expansion is carried out
as follows:

f(x) =
x− 4

(x+ 1)(x− 2)2
=

A

x+ 1
+
Bx+ C

(x− 2)2
⇒ A = −5

9
B =

5

9
C = −16

9
.

1.6 Binomial expansion

We consider the general expansion of f(x) = (x + y)n, where x and y may stand for
constants, variables or functions and n is a positive integer.
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(x+ y)1 = x+ y,

(x+ y)2 = (x+ y)(x+ y) = x2 + 2xy + y2,

(x+ y)3 = (x+ y)(x2 + 2xy + y2) = x3 + 3x2y + 3xy2 + y3.

The general expression, the binomial expansion for power n is given by

(x+ y)n =
n∑

m=0

Cn,mx
n−mym,

where

Cn,m ≡ n!

m!(n−m)!
≡

(
n

m

)
.

1.7 The principle of mathematical induction (MI

or mi)

Suppose P (k) means that the property P holds for the integer k.
Suppose that m is an integer and that
(1) P (m) is true,
(2) Whenever k ≥ m and P (k) is true, P (k + 1) is true.
Then P (n) is true for all integers n ≥ m.
(1) is called the Base and (2) is called the Induction Step. The supposition that
P (k) is true is called the inductive hypothesis.

Example: Sum of the first n integers.

1 + 2 + · · ·+ n =
n(n+ 1)

2
P (n)

Proof by MI:
Base: P (1) is true as 1 = 1(1+1)

2
.

Induction step: Let k ≥ 1 and suppose P (k) is true.

Thus 1 + 2 + · · ·+ k = k(k+1)
2

.

Hence 1+2+ · · ·+ k+(k+1) = k(k+1)
2

+(k+1) = (k+1)(k+1+1)
2

, and therefore P (k+1)
is true as well.

Problem: Let P (n) stand for ′′62n − 1′′ is divisible by 35.
Claim: P (n) is true for all integers n ≥ 1.
Proof by MI:
Base: P (1) is true as 62n − 1 = 62·1 − 1 = 36− 1 = 35.
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Induction step: Let k ≥ 1 and suppose P (k) is true. Thus 62k − 1 is divisible by 35.
Hence

62(k+1) − 1 = 62k+2 − 1 = 62k · 36− 1 = 62k · (35 + 1)− 1 = (62k − 1) + 62k · 35,

which is divisible by 35, and therefore P (k + 1) is true as well.

Exercise: Let P (n) stand for ′′n4 + 2n3 + 2n2 + n′′ is divisible by 6.
Claim: P (n) is true for all integers n ≥ 1.
Proof by MI: Do as an exercise at home.

Theorem 1.2: If x 6= 1, then

n∑
m=0

xm =
1− xn+1

1− x
for all integers n ≥ 0.

Proof by MI: Do as an exercise at home.
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Limits

Contents
2.1 Provisional definition . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Provisional definition

2.1.1

The function f will be said to have the limit L as x tends to a, if when x is arbitrarily
close to, but unequal to a, f(x) is arbitrarily close to L.

The statement “tends to a” is written as x → a, and when the limit of f(x) exists as
x→ a, this will be shown by writing

lim
x→a

f(x) = L.

Example 1: Let f(x) = x sin 1
x
.

f : R\{0} → R

What is limx→0 f(x)? ∣∣∣ sin
1

x

∣∣∣ ≤ 1 ∀x 6= 0.

Take x close to 0 but x 6= 0. If 0 < x < 1/10 this means

|f(x)| =
∣∣∣x · sin 1

x

∣∣∣ = |x| ·
∣∣∣ sin

1

x

∣∣∣ ⇒ |f(x)| ≤ |x| < 1

10
⇒ lim

x→0
f(x) = 0.

9
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Example 2: Let g(x) = x2.

g : R → R

Claim: limx→a g(x) = a2.
Proof:

|g(x)− a2| = |x2 − a2| = |(x− a)(x+ a)| = |x− a| · |x+ a|.

If |x− a| < 1/n with n ≥ 1 then

|x+ a| ≤ |x|+ |a| ≤ |a|+ 1 + |a| = 2 · |a|+ 1 ⇒ |g(x)− a2| ≤ (2 · |a|+ 1) · 1

n
.

We can choose n large enough, so that g(x) gets arbritrarily close to a2. This shows
that limx→a g(x) = a2.

Example 3: Let

h : R −→ R, f4(x) =

{
0 if x is rational
2 if x is irrational

Then limx→a h(x) does not exist.

2.1.2 Elementary properties of limits

Suppose

lim
x→a

f(x) = L and lim
x→a

g(x) = M.

Then we have

(1) limx→a[b · f(x)] = b · L, with b ∈ R.

(2) limx→a[f(x)± g(x)] = L±M.

(3) limx→a[f(x) · g(x)] = L ·M.

(4) If M 6= 0 limx→a

[
f(x)
g(x)

]
= L

M
.

Example 4: Find limx→2

[
x2+5x+3
2x3−x+4

]
. In this case, set x = 2 and get

lim
x→2

[
x2 + 5x+ 3

2x3 − x+ 4

]
=

[
22 + 5 · 2 + 3

2 · 23 − 2 + 4

]
=

17

18
.
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Example 5: Find limx→1

[
2x2+x−3
x2+x−2

]
. If we set x = 1, we get[

2 · 12 + 1− 3

12 + 1− 2

]
=

0

0
.

We realise

lim
x→1

[
2x2 + x− 3

x2 + x− 2

]
= lim

x→1

[
(x− 1)(2x+ 3)

(x− 1)(x+ 2)

]
= lim

x→1

[
(2x+ 3)

(x+ 2)

]
=

5

3
.

2.2 Continuity

If f is an arbitrary function, it is not necessarily true that

lim
x→a

f(x) = f(a).

Definition: The function f is continuous at a if

lim
x→a

f(x) = f(a).

2.2.1 Examples

1. The function g(x) = x2 is continuous everywhere.

2. Define f : R −→ R by

f(x) =


1 if x < 2
2 if x = 2
3 if x > 2

f is continuous at x for all x < 2 and x > 2, but not continous at x = 2.

3. Define h : R −→ R by

h(x) =

{
x2−4
x−2

if x 6= 2

4 if x = 2

Is h continuous at x = 2? We compute the following limit

lim
x→2

x2 − 4

x− 2
= lim

x→2

(x− 2)(x+ 2)

x− 2
= lim

x→2
(x+ 2) = 4 = h(2).

We can say h is continuous at x = 2.
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3.1 Intuitive definition

Here are the graphs of some continuous functions.

3.1.1 Examples of different behaviour

(1) f(x) = |x|
(2) f(x) =

√
|x|

(3)

f(x) =

{
x if x ≥ 0
x2 if x < 0

13
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These functions show certain types of misbehaviour at (0, 0). They are “bent” at (0, 0),
unlike the graph of the function in the following picture:

f(x) = x3 − 4x2 + 2x .

“Bent” at (0, 0) means a “tangent line” to the graph cannot be drawn. How can we
define the notion of a tangent line to a point in the graph of a function? A tangent
line cannot be defined as a line which intersects the graph only once

If h 6= 0, then the two distinct points (a, f(a)) and (a+h, f(a+h)) determine a straight
line, whose slope is

f(a+ h)− f(a)

h
.

We have never before talked about a “limit” of lines, but we can talk about the limit
of their slopes: the slope of the tangent line through (a, f(a)) should be

lim
h→0

f(a+ h)− f(a)

h
.

We are ready now for a definition and some comments.

3.2 Differentiation

Let us consider a real-valued function f : I → R, with I a real interval, that is I ⊂ R.
Let us also consider a point in that interval, a ∈ I. We define

Definition: The function f : I → R is differentiable at a ∈ I if

lim
h→0

f(a+ h)− f(a)

h

exists. In this case the limit is denoted by f ′(a) and is called the derivative of f at a.
We also say that f is differentiable if f is differentiable at a for every a in the domain
of f .
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We define the tangent line to the graph of f at (a, f(a)) to be the line through (a, f(a))
with slope f ′(a). This means that the tangent line at (a, f(a)) is defined only if f is
differentiable at a.

We denote by f ′ the function whose domain is the set of all numbers a such that f is
differentiable at a, and whose value at such a number a is

lim
h→0

f(a+ h)− f(a)

h
.

3.2.1 Examples

1. The constant function f(x) = c. We have f ′(x) = 0 for all x.

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c

h
= lim

h→0
0 = 0.

2. The linear function f(x) = c · x+ d. We have f ′(x) = c for all x.

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c(x+ h)− c · x
h

= lim
h→0

cx+ ch− cx

h
= lim

h→0

ch

h
= c.

3. The quadratic function f(x) = x2. We have f ′(x) = 2x for all x.

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 − x2

h
= lim

h→0

x2 + 2xh+ h2 − x2

h

= lim
h→0

2hx+ h2

h
= lim

h→0
(2x+ h) = 2x.

Theorem 3.1: If f is a constant function, f(x) = c, then f ′(x) = 0 for all x ∈ R.

Proof: We already showed that. �

Theorem 3.2: If f and g are differentiable at a, then f + g is also differentiable at
a, and

(f + g)′(a) = f ′(a) + g′(a).

Proof:

(f + g)′(x) = lim
h→0

(f + g)(x+ h)− (f + g)(x)

h
= lim

h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x).
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Theorem 3.3: If f and g are differentiable at a, then f · g is also differentiable at a,
and

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a).

Proof:

(f · g)′(x) = lim
h→0

(f · g)(x+ h)− (f · g)(x)
h

= lim
h→0

f(x+ h) · g(x+ h)− f(x) · g(x)
h

= lim
h→0

f(x+ h) · g(x+ h)−f(x) · g(x+ h) + f(x) · g(x+ h)− f(x) · g(x)
h

= lim
h→0

[
g(x+ h) · f(x+ h)− f(x)

h

]
+ lim

h→0

[
f(x) · g(x+ h)− g(x)

h

]
= g(x)f ′(x) + f(x)g′(x).

In the last step we have made use of the fact that both f and g are differentiable and
therefore continuous. This implies

lim
h→0

g(x+ h) = g(x) , lim
h→0

f(x) = f(x) .

Lemma 3.4: If g(x) = c · f(x) and f is differentiable at a, then g is differentiable at
a, and

g′(a) = c · f ′(a).

Proof: Do at home as an exercise.

To demonstrate what we have already achieved, we will compute the derivative of some
more special functions.

Theorem 3.5: If f(x) = xn for some integer n ≥ 1, then f ′(x) = nxn−1. for all x.
Proof: The proof will be by induction on n.

Base: if n = 1, f(x) = x and we know that f ′(x) = 1.
We check with the “proposed rule” (right-hand-side).

f ′(x) = nxn−1 for n = 1 ⇒ f ′(x) = 1 · x1−1 = 1 · x0 = 1 .

We have verified that YES the proposed rule gives the correct answer

Induction Step: we assume that it is true for n ≥ 1. That is, if f(x) = xn, then its
derivative is given by f ′(x) = nxn−1.
We need to show that the “proposed rule” is correct for n+ 1. This is as follows:
If f(x) = xn+1 we can make use of the product rule as follows

f(x) = xn+1 = xn · x = g(x) · h(x) ⇒ f ′(x) = g′(x) · h(x) + g(x) · h′(x) ,

with
g(x) = xn and h(x) = x .
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Notice that from the base step we know the derivative of h(x) and from the induction
step we know the derivative of g(x). We conclude then

⇒ f ′(x) = nxn−1 · x+ xn · 1 = nxn + xn · 1 = nxn + xn = (n+ 1)xn.

Our claim is true for n+ 1 and therefore it is true for all n ≥ 1.

Lemma 3.6: If g is differentiable at a and g(a) 6= 0, then 1
g

is differentiable at a, and(
1

g

)′

(a) = − g′(a)

[g(a)]2
.

Proof:(
1

g

)′

(x) = lim
h→0

1
g
(x+ h)− 1

g
(x)

h
= lim

h→0

1
g(x+h)

− 1
g(x)

h
= lim

h→0

g(x)− g(x+ h)

h · g(x) · g(x+ h)

= lim
h→0

[
−1

g(x) · g(x+ h)

]
·
[
g(x+ h)− g(x)

h

]
= − 1

g2(x)
· g′(x).

3.2.2 The quotient rule

Theorem 3.7 [Quotient rule]: If f and g are differentiable at a and g(a) 6= 0, then
f
g

is differentiable at a, and(
f

g

)′

(a) =
f ′(a) · g(a)− f(a) · g′(a)

[g(a)]2
.

Proof: Do at home as an exercise.

Hint: note that (
f

g

)
(x) = f(x) ·

(
1

g

)
(x)

and make use of the product rule and Lemma 3.6.

3.2.3 Examples

(1) f(x) = x
x2+1

. We have

f ′(x)
QR
=

(x)′ · (x2 + 1)− x · (x2 + 1)′

(x2 + 1)2
=

1 · (x2 + 1)− x · 2x
(x2 + 1)2

=
(x2 + 1)− 2x2

(x2 + 1)2
=

1− x2

(x2 + 1)2
.

(2) f(x) = 1
x

We have

f ′(x)
QR
=

(1)′ · x− 1 · (x)′

x2
=

0− 1

x2
= − 1

x2
.

(3) f(x) = x−n = 1
xn We have

f ′(x)
QR
=

(1)′ · xn − 1 · (xn)′

x2n
=

0− 1 · n · xn−1

x2n
= −n · x

n−1

x2n
= −n ·xn−1−2n = −nx−n−1.
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3.3 Derivatives of special functions

For the moment, and without proof, we shall use the following information

sin′(a) = cos(a) for all a,

cos′(a) = − sin(a) for all a.

3.3.1 Examples

(1) f(x) = x sin x. We have f ′(x) = sinx+ x cosx.

(2) We write sink x = (sin x)k and cosk x = (cosx)k.
If g(x) = sin2 x+ cos2 x, then g′(x) = 0 by the product rule.

g′(x) = 2 sin x · cosx+ 2 cosx · (−1) · sin x = 0.

Note that cos2 x+ sin2 x = 1, so the previous result is not surprising.

3.3.2 The chain rule

We do not know yet how to differentiate functions such as f(x) = sin(x3) and g(x) =
cos

(
1

3+x2

)
. Notice that f is the composition of f2(x) = sin x and f1(x) = x3, that is,

f(x) = f2(f1(x)) = f2(x
3) = sin(x3).

Definition: If φ : A −→ B and ψ : B −→ C are functions, their composition ψ ◦ φ
is a function with domain A and range C, such that

ψ ◦ φ : A −→ C and (ψ ◦ φ)(x) = ψ(φ(x)) for all x ∈ A.

The extremely important formula for the differentiation of a composition of two func-
tions is called the chain rule.

Theorem 3.8 [Chain rule]: If g is differentiable at a and f is differentiable at g(a),
then f ◦ g is differentiable at a and (f ◦ g)′(a) = f ′(g(a)) · g′(a).
Proof: Define a function ϕ as follows:

ϕ(h) =

{
f(g(a+h))−f(g(a))

g(a+h)−g(a)
, if g(a+ h)− g(a) 6= 0

f ′(g(a)), if g(a+ h)− g(a) = 0

We first show that ϕ is continuous at h = 0. Note that when h = 0, ϕ(h = 0) = f ′(g(a))
as g(a+h)−g(a) = 0 when h = 0. When h 6= 0 and small, g(a+h)−g(a) is also small,
so if g(a + h) − g(a) is not zero, then ϕ(h) will be close to f ′(g(a)); and if it is zero,
then ϕ(h) actually equals f ′(g(a)) = ϕ(h = 0), which is even better. We conclude that
ϕ is continuous at h = 0.
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We therefore have
lim
h→0

ϕ(h) = f ′(g(a)).

The rest of the proof is easy. Since

f(g(a+ h))− f(g(a))

h
= ϕ(h) · g(a+ h)− g(a)

h

holds if g(a+h)− g(a) 6= 0, and even if g(a+h)− g(a) = 0 (because in that case both
sides are equal to zero), we arrive at

lim
h→0

f(g(a+ h))− f(g(a))

h
= lim

h→0

[
ϕ(h) · g(a+ h)− g(a)

h

]
= lim

h→0
ϕ(h)·lim

h→0

g(a+ h)− g(a)

h

⇒ lim
h→0

f(g(a+ h))− f(g(a))

h
= f ′(g(a)) · g′(a),

as we wanted to show.

3.3.3 Examples

(1) f(x) = sin(x3). We have f ′(x) = 3x2 cos(x3).
If f1(x) = sin(x) and f2(x) = x3, we have f(x) = (f1 ◦ f2)(x). We apply the chain rule

f ′(x) = f ′1(f2(x)) · f ′2(x) = cos(f2(x)) · 3x2 = cos(x3) · 3x2.

(2) g(x) = cos
(

1
3+x2

)
. Notice that g is the composition of g1(x) = cos x and g2(x) =

1
3+x2 . We have g′(x) = 2x

(3+x2)2
sin

(
1

3+x2

)
. We apply the chain rule

g′(x) = g′1(g2(x)) · g′2(x) = − sin(g2(x)) ·
(
−1 · 2x

(3 + x2)2

)
= sin

(
1

3 + x2

)
·
(

2x

(3 + x2)2

)
.

(3) h(x) = sin2
(
sin2(x)

)
. We have h′(x) = 2 · sin(sin2 x) ·cos(sin2 x) ·2 sin x ·cosx. Note

that we can write h(x) = h1 ◦ h1(x) with h1(x) = sin2(x). We apply the chain rule

h′(x) = h′1(h1(x)) · h′1(x) = 2 sin(h1(x)) · cos(h1(x)) · h′1(x)

⇒ h′(x) = 2 sin(h1(x)) · cos(h1(x)) · 2 sin x cosx = 2 sin(sin2 x) · cos(sin2 x) · 2 sin x cosx.
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4.1 The exponential function

The Euler constant e and the associated exponential function ex can be defined in
several different ways:

e ≈ 2.718281828459 and e = lim
n→+∞

(
1 +

1

n

)n

.

The exponential function is also denoted by exp, i.e., exp(x) = ex.
The exp function has the unique feature that exp′ = exp. Note that ex > 0.

4.1.1 The logarithmic function

The inverse of exp is the function

log : (0,+∞) −→ R.

Thus log(exp(x)) = x for all x ∈ R and exp(log(y)) = y for all y > 0.
The derivative of log is

log′(x) =
1

x
for all x > 0.

For a > 0 we define
expa(x) = ex log a = exp(x log a).

We also write ax for expa(x).

21
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4.1.2 General properties of exponents

For any a > 0 and b > 0 and for any real numbers x and y
(1) a0 = 1

(2) ax · ay = ax+y

(3) ax

ay = ax−y

(4) (ax)y = ax·y

(5) a−y = 1
ay

(6) (a · b)x = ax · bx

(7)
(

a
b

)x
= ax

bx

4.1.3 Logarithmic functions

For a > 0 and a 6= 1, the inverse function of f(x) = ax is denoted by loga.

Claim: For a > 0 and a 6= 1, we have

loga(x) =
log x

log a
for all x > 0.

Proof:
log(ax)

log a
=

log
(
ex·log a

)
log a

=
x · log a

log a
= x.

We conclude that

x =
log(ax)

log a
.

We introduce y = ax so that by definition of the function loga (the inverse function of
f(x) = ax) we have x = loga(y). We can now write

x = loga(y) =
log(ax)

log a
=

log(y)

log a
⇒ loga(y) =

log(y)

log a
,

as we wanted to show.
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4.1.4 Basic properties of the logarithmic functions

For any base a > 0, a 6= 1 and for any real numbers x, y > 0:
(1) log e = 1

(2) log(xy) = log x+ log y.

(3) log
(

x
y

)
= log x− log y

(4) log(xy) = y log x

(5) loga a = 1

(6) loga(xy) = loga x+ loga y.

(7) loga(x
y) = y · loga x

(8) loga(x) = log x
log a

(9) loge = log .

4.1.5 Derivatives of expa and loga

Theorem 4.1: (a) For a > 0, we have

exp′a(x) = log a · expa(x) = log a · ax for all x.

In the special case a = 1, we have exp′1(x) = 0 for all x.
(b) For a > 0, a 6= 1, we have

log′a(x) =
1

x · log a
for all x > 0.

Proof:

(a) exp′a(x) =
(
ex·log a

)′ CR
= ex·log a · log a = expa(x) · log a.

(b) log′a(x) =

(
log x

log a

)′

=
log′ x

log a
=

1

x · log a
.
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4.2 Trigonometric functions

The six trigonometric functions are defined as follows

sin θ = y,

cos θ = x,

tan θ =
sin θ

cos θ
, x 6= 0

csc θ =
1

sin θ
, y 6= 0

sec θ =
1

cos θ
, x 6= 0

cot θ =
cos θ

sin θ
, y 6= 0

Please revise: (i) converting degrees into radians for angles in the interval

[0, 2π], (ii) values of the trigonometric functions for special values and

(iii) plots of trigonometric functions.

Periodicity: The definitions of the sine and cosine functions imply that they are
periodic with period 2π. That is,

sin(θ + 2π) = sin θ and cos(θ + 2π) = cos θ.
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It follows that the secant and cosecant functions are also periodic with period 2π. It
can be verified that the tangent and cotangent functions have period π.

4.3 Hyperbolic functions

The hyperbolic sine, cosine and tangent functions, written sinhx, cosh x and tanhx,
are defined in terms of the exponential function as follows:

sinh x =
ex − e−x

2
, (hyperbolic sine function) ,

coshx =
ex + e−x

2
, (hyperbolic cosine function) ,

tanh x =
sinh x

coshx
. (hyperbolic tangent function) .

Note that cosh x 6= 0 for all x; thus tanhx is defined for all x.

Homework: Plot the following functions:

1. f1 : R → R such that f1(x) = coshx.

2. f2 : R → R such that f2(x) = sinhx.

3. f3 : R → R such that f3(x) = tanh x.

Theorem 4.2:

sinh′ x = coshx

cosh′ x = sinhx

tanh′ x =
1

cosh2 x

Proof: Do at home as an exercise.
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5.1 Inverse functions

Definition: A function is said to be one-to-one if there are no two distinct numbers
in the domain of f at which f takes on the same value: f(x1) = f(x2) ⇒ x1 = x2.

Thus, if f is one-to-one and x1, x2 are different points of the domain, then f(x1) 6=
f(x2).

Examples: (1) f : R −→ R such that f(x) = x3

(2) g : [0,+∞) −→ [0,+∞) such that g(x) =
√
x

Simple geometric test: The horizontal line test can be used to determine whether
a function is one-to-one.
Draw the graph on the whiteboard.

Theorem 5.1: If f is a one-to-one function, then there is one and only one function
g with domain equal to the range of f that satisfies the equation

f(g(x)) = x for all x in the range of f

Proof: The proof is straight forward. If x is in the range of f , then f must take on

27



28 5.2 Inverse trigonometrical functions

the value x at some number. Since f is one-to-one, there can be only one such number.
We call this number g(x).

The function that we have named g in the theorem is called the inverse of f and is
usually denoted by the symbol f−1.

Definition: Let f be a one-to-one function. The inverse function of f , denoted by
f−1, is the unique function with domain equal to the range of f that satisfies the
equation

f(f−1(x)) = x for all x in the range of f

Warning: Do not confuse the function f−1 with the function
1

f
.

5.1.1 Examples:

(1) f1 : [0,+∞) −→ [0,+∞) such that f1(x) = x2. Then, its inverse function is
given by f−1

1 : [0,+∞) −→ [0,+∞) with f−1
1 (x) =

√
x.

(2) exp−1 = log

(3) log−1 = exp

5.2 Inverse trigonometrical functions

The trigonometrical functions sin, cos and tan are not one-to-one due to their peri-
odicity. If their domains are suitable restricted they become one-to-one functions, as
shown in the figures below.

The corresponding inverse trigonometric functions which can be defined are denoted
by arcsin, arccos, arctan, or, alternatively, by sin−1, cos−1 tan−1. These functions are
defined as follows

y = arcsinx if sin y = x; domain: − 1 ≤ x ≤ 1 range: − π
2
≤ y ≤ π

2

y = arccosx if cos y = x; domain: − 1 ≤ x ≤ 1 range: 0 ≤ y ≤ π
y = arctan x if tan y = x; domain: −∞ < x < +∞ range: − π

2
≤ y ≤ π

2
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Graphs of these functions are shown below.

5.3 Differentiating the inverse functions

Is there a rule that allows us to express the derivative of the inverse function f−1 in
terms of the derivative of f? The answer is positive.

Theorem 5.2: Let f be a one-to-one function defined on an interval and suppose that
f is differentiable at f−1(b), with derivative f ′(f−1(b)) 6= 0. Then f−1 is differentiable
at b and

(f−1)′(b) =
1

f ′(f−1(b))
.

Proof: We do not prove that f−1 is differentiable at b, but we shall show that the
previous formula must be true if f−1(b) is differentiable at b.
Note that f(f−1(x)) = x holds for all x in the range of f . Thus, differentiating both
sides of this equation we get

f ′(f−1(x)) · (f−1)′(x) = (x)′ = 1,

where we have applied the chain rule to the left hand side. Thus, substituting b for x
in the above equation

f ′(f−1(b)) · (f−1)′(b) = 1,

and dividing both sides by f ′(f−1(b)) we arrive at the desired equation, namely

(f−1)′(b) =
1

f ′(f−1(b))
.

Examples: (1) Since exp−1 = log we obtain

log′(b) =
1

elog b
=

1

b
.

(2) For the inverse of trigonometric functions we get

arcsin′(x) =
1

sin′(arcsin(x))
=

1

cos(arcsin(x))
,
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when −1 < x < 1. Let y = arcsin x. Then sin y = x and cos y =
√

1− x2, since
y ∈

[
−π

2
, π

2

]
and 1− sin2 y = cos2 y. As a result,

arcsin′(x) =
1√

1− x2
,

whenever −1 < x < 1.
(3) Similarly one establishes

arccos′(x) =
−1√
1− x2

,

whenever −1 < x < 1.
(4) Finally, we can show

arctan′(x) =
1

1 + x2
.

Proof: For arctan we get

arctan′(x) =
1

tan′(arctan(x))
= cos2(arctan(x)),

because

tan′(x)
QR
=

sin′(x) · cos(x)− sin(x) cos′(x)

cos2 x
=

cos(x) · cos(x) + sin(x) sin(x)

cos2 x

=
cos2(x) + sin2(x)

cos2 x
=

1

cos2 x
.

Now put y = arctanx, so that x2 = tan2 y =
sin2 y

cos2 y
=

1− cos2 y

cos2 y
=

1

cos2 y
− 1, which

yields

cos2 y =
1

1 + x2
.

Thus, we arrive at

arctan′(x) =
1

1 + x2
.
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6.1 Introduction

The concept of a derivative does not display its full strength until allied with the
concept of the integral.

The integral, ultimately defined in quite a complicated way, formalises a simple, intu-
itive concept of area. Let f be a function whose graph between a and b is displayed
below:

6.1.1 Interpretation

We denote the shaded region byR(f, a, b). The number which we will eventually assign

to R(f, a, b) will be called the integral of f on [a,b] and denoted
∫ b

a
f or

∫ b

a
dx f(x)

or
∫ b

a
f(x)dx. The quantity

∫ b

a
dxf(x) measures the area of R(f, a, b).

31
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If g is a function which also takes negative values in the interval [a, b], its graph will
look like this:

+ +

−

g(x)

x

Here
∫ b

a
dxg(x) will represent the difference of the area of the blue shaded region and

the area of the red shaded region.

6.1.2 The speed-distance problem

Suppose that during the course of the motion the speed of a particle does not remain
constant but varies continuously. How can the total distance traveled be computed
then? To answer this question, we suppose that the motion begins at time a and ends
at time b and that f(t) is the speed at time t for t ∈ [a, b].
Graph

We begin by breaking up the interval [a, b] into a finite number of subintervals:

[t0, t1], [t1, t2], . . . , [tn−1, tn] with a = t0 < t1 < t2 < · · · < tn = b.

On each subinterval [tk−1, tk] the object attains a certain maximum speed Mk and a
certain minimum speed mk. If throughout the time interval [tk−1, tk] the object were
to move constantly at its minimum speed mk, then it would cover a distance of

mk(tk − tk−1) units.

If instead it were to move constantly at its maximum speed Mk, then it would cover a
distance of

Mk(tk − tk−1) units.

As it is, the actual distance travelled on each subinterval [tk−1, tk], call it sk must lie
somewhere in between; namely, we must have

mk(tk − tk−1) ≤ sk ≤Mk(tk − tk−1).

The total distance travelled during the time interval [a, b], call it s, must be the sum of
the distances travelled during the subintervals [tk−1, tk]. In other words, we must have

s = s1 + s2 + · · ·+ sn.
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Figure 6.1: Lower sum (left figure) and Upper sum (right figure)

It follows by the addition of the inequalities that

n∑
k=1

mk(tk − tk−1) ≤
n∑

k=1

sk = s ≤
n∑

k=1

Mk(tk − tk−1).

n∑
k=1

mk(tk − tk−1)

is called a lower sum for the speed function f and

n∑
k=1

Mk(tk − tk−1)

is called an upper sum for the speed function f .

The actual distance travelled corresponds to the area of the region R(f, a, b), i.e.,

s =
∫ b

a
f . Thence

n∑
k=1

mk(tk − tk−1) ≤
∫ b

a

dx f(x) ≤
n∑

k=1

Mk(tk − tk−1).

6.2 The definite integral

Definition: Let a, b. A partition of the interval [a, b] is a finite collection of points
in [a, b], one of which is a and one of which is b.

The points can be numbered so that a = t0 < t1 < t2 < · · · < tn = b; we shall always
assume that such a numbering has been assigned.

Definition: A function f is bounded on [a, b] if there exists a positive integer N such
that

|f(x)| < N for all x ∈ [a, b].
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Definition: Suppose f is bounded on [a, b] and P = {a = t0 < t1 < t2 < · · · <
tn = b} is a partition of [a, b]. Let mk be the minimum value of f on [tk−1, tk], i.e.,
mk = inf{f(x) : x ∈ [tk−1, tk]}, and Mk be the maximum value of f on [tk−1, tk], i.e.,
Mk = sup{f(x) : x ∈ [tk−1, tk]}.

The lower sum of f for P , denoted by L(f, P ) is defined as

L(f, P ) =
n∑

k=1

mk(tk − tk−1).

The upper sum of f for P , denoted by U(f, P ) is defined as

U(f, P ) =
n∑

k=1

Mk(tk − tk−1).

Definition (the definite integral): A function f defined on an interval [a, b] which
is bounded on [a, b] is integrable on [a, b] if there is one and only one number I that
satisfies the inequality

L(f, P ) ≤ I ≤ U(f, P ),

for all partitions P of [a, b].

This unique number I is called the definite integral (or more simply the integral) of f
from a to b and is denoted by ∫ b

a

f or

∫ b

a

dx f(x).

6.2.1 Examples:

(1) Let f(x) = x2. We have ∫ b

0

dx f(x) =
b3

3
.

Proof: Let b > 0 and Pn = {0 = t0 < t1 < t2 < · · · < tn = b} be a partition of [0, b].
Set ∆i = ti − ti−1, i = 1, . . . , n.
The function f(x) = x2 is an increasing function and this implies that mi = f(ti−1) =
t2i−1 and Mi = f(ti) = t2i . We then have

L(f, Pn) =
n∑

i=1

t2i−1(ti−ti−1) =
n∑

i=1

t2i−1∆i and U(f, Pn) =
n∑

i=1

t2i (ti−ti−1) =
n∑

i=1

t2i ∆i.

Now suppose Pn partitions [0, b] into n equal parts. Then

ti =
i · b
n
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and the lower and upper sums become

L(f, Pn) =
n∑

i=1

t2i−1(ti − ti−1) =
n∑

i=1

(i− 1)2 b
2

n2
· b
n

=
n∑

i=1

(i− 1)2 b
3

n3
=
b3

n3

n∑
i=1

(i− 1)2

U(f, Pn) =
n∑

i=1

t2i (ti − ti−1) =
n∑

i=1

(i)2 b
2

n2
· b
n

=
n∑

i=1

(i)2 b
3

n3
=
b3

n3

n∑
i=1

(i)2.

Using the formula

12 + 22 + 32 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1)

we get
n∑

i=1

(i)2 =
1

6
n(n+ 1)(2n+ 1),

and

n∑
i=1

(i−1)2 = 02+22+32+· · ·+(n−1)2 =
n−1∑
i=0

(i)2 =
1

6
(n−1)(n)(2(n−1)+1) =

1

6
(n−1)(n)(2n−1),

so that

L(f, Pn) =
b3

n3
· 1

6
(n− 1)(n)(2n− 1) and U(f, Pn) =

b3

n3
· 1

6
(n)(n+ 1)(2n+ 1).

It is not hard to show that (make use of Mathematical Induction)

L(f, Pn) ≤ b3

3
≤ U(f, Pn)

and that

U(f, Pn)− L(f, Pn) =
b3

n

can be made as small as desired by choosing n sufficiently large.

This sort of reasoning then shows that∫ b

0

dx f(x) =
b3

3
.

(2) Let g(x) = x. We have ∫ b

0

dx g(x) =
b2

2
.

Proof: Let b > 0 and Pn = {0 = t0 < t1 < t2 < · · · < tn = b} be a partition of [0, b].
Set ∆i = ti − ti−1, i = 1, . . . , n.
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The function g(x) = x is an increasing function and this implies that mi = g(ti−1) =
ti−1 and Mi = g(ti) = ti. We then have

L(g, Pn) =
n∑

i=1

ti−1(ti−ti−1) =
n∑

i=1

ti−1∆i and U(g, Pn) =
n∑

i=1

ti(ti−ti−1) =
n∑

i=1

ti∆i.

Now suppose Pn partitions [0, b] into n equal parts. Then

ti =
i · b
n

and the lower and upper sums become

L(g, Pn) =
n∑

i=1

ti−1(ti − ti−1) =
n∑

i=1

(i− 1)
b2

n2
=
b2

n2

n∑
i=1

(i− 1)

U(g, Pn) =
n∑

i=1

ti(ti − ti−1) =
n∑

i=1

(i)
b2

n2
=
b2

n2

n∑
i=1

(i).

Using the formula

1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1)

we get
n∑

i=1

(i) =
1

2
n(n+ 1),

and
n∑

i=1

(i− 1) = 0 + 2 + 3 + · · ·+ (n− 1) =
n−1∑
i=0

(i) =
1

2
(n− 1)(n),

so that

L(g, Pn) =
b2

n2
·1
2
(n−1)(n) =

(n− 1)

n
·b

2

2
and U(g, Pn) =

b2

n2
·1
2
(n)(n+1) =

(n+ 1)

n
·b

2

2
.

It is not hard to show that (make use of Mathematical Induction)

(n− 1)

n
· b

2

2
≤ b2

2
≤ (n+ 1)

n
· b

2

2
,

we get

L(g, Pn) ≤ b2

2
≤ U(g, Pn)

and that

U(g, Pn)− L(g, Pn) =
2

n
· b

2

2
=
b2

n

can be made as small as desired by choosing n sufficiently large.
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This sort of reasoning then shows that∫ b

0

dx g(x) =
b2

2
.

(3) Here is an example of a function that is not integrable. Define

h(x) =

{
0 if x is rational
1 if x is irrational

(6.1)

Proof: If we take a partition Pn = {0 = t0 < t1 < t2 < · · · < tn = b} of [a, b], we get

L(h, Pn) =
n∑

i=1

mi(ti − ti−1) = 0 and U(f, Pn) =
n∑

i=1

Mi(ti − ti−1) = b− a,

because the minimum value of the function h on any interval is 0 and the maximum
value of h on any interval is 1.

The two examples of computing ∫ b

0

dx f(x)

show that this can be quite laborious a task.
In the next section we shall be introducing a powerful tool for calculating integrals, the
so-called fundamental theorem of calculus, which connects differentiation and integra-
tion. We finish this section mentioning this important result.

Theorem 6.1: The first fundamental theorem of calculus
Suppose f is continuous on the interval [a, b]. Then f is integrable on [a, b].
Proof: It will be given in the following section. �

6.3 The fundamental theorem of calculus

Theorem 6.1: (The first fundamental theorem of calculus)
Let f be integrable on [a, b] and define F on [a, b] by

F (t) =

∫ t

a

dx f(x).

If f is continuous at c in the interval [a, b], then F is differentiable at c and F ′(c) = f(c).
Proof: Let h > 0. Then

F (c+ h)− F (c)

h
=

1

h

[∫ c+h

a

dx f(x)−
∫ c

a

dx f(x)

]
=

1

h

∫ c+h

c

dx f(x).

Now define

mh = minimum value of f on [c, c+ h];
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Mh = maximum value of f on [c, c+ h];

By definition of the integral we have

h ·mh ≤
∫ c+h

c

dx f(x) ≤ h ·Mh.

Therefore

mh ≤
1

h

∫ c+h

c

dx f(x) ≤Mh.

Since f is continuous at c we have

lim
h→0

mh = lim
h→0

Mh = f(c).

Thus,

F ′(c) = lim
h→0

F (c+ h)− F (c)

h
= lim

h→0

[
1

h

∫ c+h

c

dx f(x)

]
= f(c).

[If h < 0, only a few details of the argument have to be changed.] �

Lemma 6.2: Let g, h be differentiable functions on [a, b]. If g′(x) = h′(x) for all
x ∈ (a, b), then there exists a constant C such that g(x) = h(x) + c for all x ∈ (a, b).

Proof: Set ϕ(x) = g(x)− h(x). Then ϕ′(x) = 0 for all x ∈ [a, b]. This implies that ϕ
is constant on [a, b]. (This should be intuitively clear; we cannot give a rigorous proof
at this stage.) Thus, there is a constant C such that ϕ(x) = C for all c ∈ [a, b] and
hence g(x) = h(x) + C. �

Corollary 6.3: If f is continuous on [a, b] and f = g′ for some function g, then∫ b

a

dx f(x) = g(b)− g(a).

Proof: Let

F (t) =

∫ t

a

dx f(x).

Then F ′ = f by Theorem 6.1. Thus F ′ = g′. So it follows by Lemma 6.2 that there is
a constant C such that F = g + C. Now F (a) = 0 and

F (b) =

∫ b

a

dx f(x).

Hence ∫ b

a

dx f(x) = F (b)− F (a) = (g(b) + C)− (g(a) + C) = g(b)− g(a).

Since F (a) = 0 and F (a) = g(a) + C, we get C = −g(a). �
The next theorem strengthens Theorem 6.1.
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Theorem 6.4: (The second fundamental theorem of calculus)
If f is integrable on [a, b] and f = g′ for some function g, then∫ b

a

dx f(x) = g(b)− g(a).

Proof: Not given. �

6.3.1 Examples

1. f(x) = xn for some n ≥ 1. Then g′(x) = f(x), where

g(x) =
xn+1

n+ 1
.

Hence ∫ b

a

dx f(x) = g(b)− g(a) =
bn+1

n+ 1
− an+1

n+ 1
.

2. If n > 1 and f(x) = x−n and 0 < a < b, then g′(x) = f(x), where

g(x) =
x−n+1

−n+ 1
.

Hence ∫ b

a

dx f(x) = g(b)− g(a) =
b−n+1

−n+ 1
− a−n+1

−n+ 1
.

3. Find the area of the region between the graphs of the functions f(x) = x2 and
g(x) = x3 on the interval [0, 1].

If 0 ≤ x ≤ 1, then 0 ≤ x3 ≤ x2, so that the graph of g lies below that of f . The
area of the region of interest to us is therefore

R(f, 0, 1)−R(g, 0, 1),

which is ∫ 1

0

dx x2 −
∫ 1

0

dx x3 =
1

3
− 1

4
=

1

12
.
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6.4 Integration by substitution

Every computation of a derivative yields, according to the Fundamental Theorem of
Calculus, a formula about integrals. For example, if

F (x) = x(log x)− x,

then F ′(x) = log x. Consequently,∫ b

a

dx log x = F (b)− F (a) = b(log b)− b− [a(log a)− a],

when 0 < a < b.

Formulas of this sort are simplified considerably if we adopt the notation

F (x)
∣∣∣b
a

= F (b)− F (a).

We may then write ∫ b

a

dx log x = F (b)− F (a) = x(log x)− x
∣∣∣b
a
.

Definition: A function F satisfying F ′ = f is called a primitive of f .

Notice that a continuous function f always has a primitive, namely

F (x) =

∫ x

a

dx f(x).

In this section we will try to find a primitive which can be written in terms of familiar
functions. A function which can be written in this way is called an elementary func-
tion. To be precise, an elementary function is one which can be obtained by addition,
multiplication, division and composition from the rational functions, the trigonometric
functions and their inverses and the functions log and exp.

It should be stated at the very outset that elementary primitives usually cannot be
found. For example, there is no elementary function F such that

F ′(x) = e−x2

for all x.

Every rule for the computation of a derivative gives a formula about integrals. In
particular, the product rule gives rise to Integration by Parts. We use the
acronym FTC for Fundamental Theorem of Calculus.
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Theorem 6.5 [Integration by parts]: If f ′ and g′ are continuous on [a, b], then∫ b

a

dx f(x)g′(x) = f(x)g(x)
∣∣∣b
a
−

∫ b

a

dx f ′(x)g(x).

Proof: Let F = f · g. By the Product Rule for differentiation we have

F ′ = f ′ · g + f · g′.

Hence, by the FTC,∫ b

a

dx [f ′(x)·g(x)+f(x)g′(x)] =

∫ b

a

dx f ′(x)·g(x)+
∫ b

a

dx f(x)g′(x) = f(b)g(b)−f(a)g(a).

Hence ∫ b

a

dx f(x)g′(x) = f(x)g(x)
∣∣∣b
a
−

∫ b

a

dx f ′(x)g(x).

6.4.1 Examples

1. Example 1 ∫ b

a

dx x ex = x ex
∣∣∣b
a
−

∫ b

a

dx 1 · ex = (x− 1) · ex
∣∣∣b
a
,

where we have chosen f = x and g′ = ex, so that f ′ = 1 and g = ex.

2. Example 2∫ b

a

dx x sin x = x(− cosx)
∣∣∣b
a
−

∫ b

a

dx 1 · (− cosx). = x(− cosx)
∣∣∣b
a
+ sinx

∣∣∣b
a
,

where we have chosen f = x and g′ = sinx, so that f ′ = 1 and g = − cosx.

3. Example 3: There is a special trick which often works with integration by parts,
namely to consider the function g′ to be the factor 1, which can always be written
in.∫ b

a

dx log x =

∫ b

a

dx 1·log x = x log x
∣∣∣b
a
−

∫ b

a

dx x·1
x
. = x log x

∣∣∣b
a
−x

∣∣∣b
a

= x(log x−1)
∣∣∣b
a

where we have chosen f = log x and g′ = 1, so that f ′ = 1/x and g = x.

4. Example 4: Another trick is to use integration by parts to find
∫
h in terms of h

again, and then solve for
∫
h.∫ b

a

dx
1

x
log x = log x log x

∣∣∣b
a
−

∫ b

a

dx
1

x
· log x,

where we have chosen f = log x and g′ = 1/x, so that f ′ = 1/x and g = log x.
This implies that

2

∫ b

a

dx
1

x
log x = log x log x

∣∣∣b
a

= (log x)2
∣∣∣b
a
⇒

∫ b

a

dx
1

x
log x =

1

2
(log x)2

∣∣∣b
a
.
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6.5 The indefinite integral

Definition: If f is a continuous function, then it has a primitive F (x) =
∫ x

a
dx f(x).

We also know that if G is another primitive of f , then F and G differ by a constant
C, i.e.,

F (x) = G(x) + C.

The symbol
∫
f or

∫
dxf(x) (without boundaries) is used to denote a “primitive of f”

or, more precisely, “the collection of all primitives of f”.

A formula like ∫
dx x3 =

x4

4
,

means that the function F (x) = x4

4
satisfies F ′(x) = x3. Some people write∫
dx x3 =

x4

4
+ C,

to emphasize that the primitives of f(x) = x3 are precisely the functions of the form
F (x) = x4

4
+ C for some real number C. We shall omit C as the concern for this

constant is merely an annoyance.

A function
∫
dx f(x), i.e., a primitive of f , is often called an indefinite integral of f ,

while
∫ b

a
dx f(x) is called, by way of contrast, a definite integral.

Theorem 6.6 [Integration by parts, indefinite form]: If f ′ and g′ are continuous
on [a, b], then ∫

dx f(x)g′(x) = f(x)g(x)−
∫
dx f ′(x)g(x).

Proof: Let G be a primitive of f ′g. Put

F (x) = f(x) · g(x)−G(x).

Then

F ′(x)
PR
= f ′(x)·g(x)+f(x)·g′(x)−G′(x) = f ′(x)·g(x)+f(x)·g′(x)−f ′(x)·g(x) = f(x)·g′(x).�

6.5.1 Examples

1. Example 1∫
dx ex sin x = ex·(− cosx)−

∫
dx ex·(− cosx) = ex·(− cosx)+

∫
dx ex·(cosx),

where we have chosen f = ex and g′ = sinx, so that f ′ = ex and g = − cosx. We
integrate by parts again, with the choice u = ex and v′ = cos x, so that u′ = ex

and v = sinx, so that∫
dx ex sin x = ex · (− cosx) + [ex · sin x−

∫
dx ex · (sinx)],



Chapter 6 – The integral 43

Therefore

2

∫
dx ex sin x = ex · (− cosx) + ex · sin x = ex(− cosx+ sinx)

⇒
∫
dx ex sin x =

1

2
ex(− cosx+ sinx).

2. Example 2 ∫
dx (log x)2 =

∫
dx (log x) · (log x),

where we have chosen f = log x and g′ = log x. We make use of our previous
result (see previous example 3) to obtain f ′ = 1/x and g = [x(log x)− x]:∫
dx (log x)2 = log x[x(log x)− x]−

∫
dx

1

x
[x(log x)− x]

= log x[x(log x)− x]−
∫
dx [(log x)− 1]

= log x[x(log x)− x]−
∫
dx log x+

∫
dx 1

= log x[x(log x)− x]− [x(log x)− x] + x = x(log x)2 − 2x(log x) + 2x.

3. Example 3 We choose f = x2 and g′ = ex so that f ′ = 2x and g = ex:∫
dx x2 · ex = x2 · ex −

∫
dx 2x · ex

= x2 · ex − 2

∫
dx x · ex integration by parts u = x, v′ = ex

= x2 · ex − 2[x · ex −
∫
dx 1 · ex]

= x2 · ex − 2[x · ex − ex] = ex[x2 − 2x+ 2]

6.5.2 The substitution formula

Theorem 6.7 [Substitution formula]: If f and g′ are continuous, then∫ g(b)

g(a)

du f(u) =

∫ b

a

dx f(g(x)) · g′(x).

Proof: If F is a primitive of f , then the left side is F (g(b))− F (g(a)). On the other
hand,

(F ◦ g)′ CR
= (F ′ ◦ g) · g′ = (f ◦ g) · g′,

by the Chain Rule.

So F ◦ g is a primitive of (f ◦ g) · g′ and the right side is (F ◦ g)(b)− (F ◦ g)(a).
The simplest uses of the substitution formula depend upon recognising that a given
function is of the form (f ◦ g) · g′. Let SF stand for substitution formula
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6.5.3 Examples

1. Example 1 ∫ b

a

dx sin5 x · cosx.

Consider g(x) = sinx and f(u) = u5, so that g′(x) = cosx and (f ◦g)(x) = sin5 x.∫ b

a

dx sin5 x · cosx
SF
=

∫ g(b)

g(a)

du f(u) =

∫ sin(b)

sin(a)

du u5 =
sin6 b

6
− sin6 a

6
.

2. Example 2 ∫ b

a

dx tan x.

Consider g(x) = cosx and f(u) = 1
u
.∫ b

a

dx tan x = −
∫ b

a

dx
− sin x

cosx
= −

∫ b

a

dx f(g(x)) · g′(x)

SF
= −

∫ g(b)

g(a)

du f(u) = −
∫ cos(b)

cos(a)

du
1

u
= log(cos a)− log(cos b).

3. Example 3 ∫ b

a

dx
1

x log x
.

Consider g(x) = log x and f(u) = 1
u
.∫ b

a

dx
1

x log x
=

∫ b

a

dx f(g(x)) · g′(x) SF
=

∫ g(b)

g(a)

du f(u)

=

∫ log(b)

log(a)

du
1

u
= log(log b)− log(log a).

The uses of the substitution formula can be shortened by eliminating the intermediate
steps, which involve writing∫ b

a

dx f(g(x)) · g′(x) =

∫ g(b)

g(a)

du f(u),

by noticing the following: To go from the left side to the right side, substitute

(1) u for g(x)

(2) du for dxg′(x)

and change the limits of integration.

Our first example then becomes
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1. Example 1 ∫ b

a

dx sin5 x · cosx.

Substitute u for sinx and du = dx cosx so that∫ b

a

dx sin5 x · cosx =

∫ sin(b)

sin(a)

du u5 =
sin6 b

6
− sin6 a

6
.

2. Example 2 ∫ b

a

dx tan x.

Substitute u for cosx and du = −dx sin x so that∫ b

a

dx tan x = −
∫ b

a

dx
− sin x

cosx
= −

∫ cos(b)

cos(a)

du
1

u
= log(cos a)− log(cos b).

3. Example 3 ∫ b

a

dx
1

x log x
.

Substitute u for log x and du = dx(1/x) so that∫ b

a

dx
1

x log x
=

∫ log(b)

log(a)

du
1

u
= log(log b)− log(log a).

Next, we shall be interested in primitives rather than definite integrals.
If we can find ∫ b

a

dx f(x)

for all a and b, then we can certainly find∫
dx f(x).

For example, since ∫ b

a

dx sin5 x · cosx =
sin6 b

6
− sin6 a

6
,

it follows that ∫
dx sin5 x · cosx =

sin6 x

x
.

Similarly ∫
dx tan x = − log(cos x).

It is uneconomical to obtain primitives from the substitution formula by first find-
ing definite integrals. Instead, the two steps can be combined to yield the following
procedure:
(1) Let u for g(x), so that du for dxg′(x).
(2) Find a primitive (as an expression involving u).
(3) Substitute g(x) back for u.
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6.5.4 Examples

1. Example 1 ∫
dx sin5 x · cosx.

(1) Substitute u for sinx and du = dx cosx so that∫
dx sin5 x · cosx =

∫
du u5.

(2) Evaluate the previous integral∫
du u5 =

u6

6
.

(3) Remember to substitute back in terms of x, not u (u for sinx)∫
dx sin5 x · cosx =

∫
du u5 =

u6

6
=

sin6 x

6
.

2. Example 2 ∫
dx

1

x log x
.

(1) Substitute u for log x and du = dx(1/x) so that∫
dx

1

x log x
=

∫
du

1

u
.

(2) Evaluate the previous integral∫
du

1

u
= log u.

(3) Remember to substitute back in terms of x, not u (u for log x)∫
dx

1

x log x
=

∫
du

1

u
= log u = log(log x).

3. Example 3 ∫
dx

x

1 + x2
.

(1) Substitute u for 1 + x2 and du = dx2x so that∫
dx

x

1 + x2
=

1

2

∫
du

1

u
.
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(2) Evaluate the previous integral

1

2

∫
du

1

u
=

1

2
log u.

(3) Remember to substitute back in terms of x, not u (u for 1 + x2)∫
dx

x

1 + x2
.
1

2

∫
du

1

u
=

1

2
log u =

1

2
log(1 + x2).

4. Example 4 ∫
dx arctanx.

Since arctan′(x) = 1
1+x2 , integration by parts yields∫

dx arctanx =

∫
dx 1·arctanx = x·arctanx−

∫
dx x· 1

1 + x2
= x·arctanx−1

2
log(1+x2).

5. Example 5: More interesting uses of the substitution formula occur when the
factor g′(x) does NOT appear. Consider∫

dx
1 + ex

1− ex
.

We can write ∫
dx

1 + ex

1− ex
=

∫
dx

1 + ex

1− ex

1

ex
· ex.

We let u = ex and du = dx ex, so that we obtain∫
du

1 + u

1− u

1

u
=

∫
du

[
2

1− u
+

1

u

]
= −2 log(1− u) + log(u).

We substitute back to obtain∫
dx

1 + ex

1− ex
= −2 log(1− ex) + log(ex) = −2 log(1− ex) + x.
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Complex numbers
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7.1 Introduction

There are equations that have no real solution

x2 + 1 = 0,

since x2 > 0 for all reals x. So we introduce the complex numbers.
That is the end of the process since any polynomial equation

a0 + a1z + a2z
2 + · · ·+ anz

n = 0

with complex coefficients, a0, a1, a2, · · · , an, always has a complex solution, and all its
solutions are complex (counting real numbers as a special kind of complex numbers).
So there is no need to introduce new numbers. This is called the Fundamental
Theorem of Algebra, although all proofs of this theorem need some Analysis.

Definition: A complex number is an ordered pair of real numbers; if z = (a, b) is a
complex number, then a is called the real part (notated Re(z)) of z and b is called the
imaginary part of z (notated Im(z)). The set of complex numbers is denoted by C. If
(a, b) and (c, d) are two complex numbers we define

(a, b)+(c, d) = (a+ c, b+ d),

(a, b)·(c, d) = (a · c− b · d, a · d+ b · c).

49
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Note that the + and · appearing on the left hand side are new symbols being de-
fined, while the +,− and · appearing on the right hand side are the familiar addition,
subtraction and multiplication for real numbers.

Example:

(1, 2) +

(
−1

2
, π

)
=

(
1

2
, 2 + π

)
(1, 2) ·

(
−1

2
, π

)
=

(
−1

2
− 2π, π − 1

)
.

In particular,

(a, 0) + (b, 0) = (a+ b, 0),

(a, 0) · (b, 0) = (a · b, 0).

This shows that the complex numbers of the form (a, 0) behave precisely the same with
respect to addition and multiplication of complex numbers as real numbers do with
their own addition and multiplication. For this reason we will identify a real number
a with the complex number (a, 0) and adopt the convention that (a, 0) will be denoted
simply by a.
The familiar a+ i · b notation for complex numbers can now be recovered if one more
definition is made.

Definition: i = (0, 1).
Notice that i2 = (0, 1) · (0, 1) = (−1, 0) = −1.
Moreover,

(a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0) · (0, 1) = a+ i · b.

We want to show that the usual laws of algebra operate in C.

If z = a+ ib with a, b real numbers, a+ ib is called the Cartesian form of z.

Definition: If z = a + ib is a complex number with a, b real numbers, then the
conjugate or complex conjugate z̄ (or z∗) of z is defined as

z̄ = a− ib

and the absolute value or modulus |z| of z is defined as

|z| =
√
a2 + b2.

Note that
(i) a2 + b2 ≥ 0 so that

√
a2 + b2 is defined unambiguously; it denotes the non-negative

real square root of a2 + b2;
(ii) z · z̄ = a2+b2, thus z · z̄ is a real number and |z| =

√
z · z̄, or equivalently, |z|2 = z · z̄.
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7.2 The geometry of complex numbers

The complex number z = a + ib can be represented graphically either as a point or
as a directed line (vector) in what is called the complex plane (also the z-plane) or an
Argand diagram.

The complex number z = a+ib is represented either as the point with coordinates (a, b)
or as the directed line from the origin to the point (a, b) with the direction directed by
an arrow on the line pointing away from the origin.

Geometrical representation of the sum: The geometrical representation of the
sum z1 + z2 with z1 = a1 + ib1 and z2 = a2 + ib2 is shown.

The rule for addition is called the triangle law for addition.
Addition is a commutative operation

z1 + z2 = z2 + z1,

so the sum may be evaluated in either of the ways.
This leads to the parallelogram law for addition.

Geometrical representation of the difference: The difference is formed in similar
fashion by writing

z1 − z2 = z1 + (−z2)

and adding to z1 the complex number −z2.

Geometrical representation of the complex conjugate: The complex conjugate
z̄ = a− ib of the complex number z = a+ ib is the reflection of the point (a, b) in the
real axis.
Notice that |z| is the length of the vector ~OP.

Theorem 7.1: Let z and w be complex numbers. Then

(1) z̄ = z and |z| = |z̄|.

(2) z̄ = z if and only if z is real (i.e., is of the form a+ 0i, for some real number a).
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(3) z + w = z̄ + w̄.

(4) −z = −z̄.

(5) z · w = z̄ · w̄.

(6) If z = a+ ib 6= 0, then
1

z
=
a− ib

|z|2
.

(7)
(

1
z

)
= 1

z̄
, if z 6= 0.

(8) |z|2 = z · z̄.

(9) |z · w| = |z| · |w|.

(10) |z + w| ≤ |z|+ |w| (Triangle inequality).

(11) |z| − |w| ≤ |z − w|.

Proof: (1) and (2) are clear. Equations (3) and (5) may be checked by straightforward
calculations and (4) and (7) may then be proved by a trick

0 = 0̄ = z + (−z) = z̄ +−z

and we can conclude (4)
−z = −z̄.

In the same way

1 = 1̄ = z · 1

z
= z̄ · 1

z

and we can conclude (7) (
1

z

)
=

1

z̄
,

if z 6= 0.

(8) and (9) may also be proved by a straightforward calculation.

For (6) we compute

z ·
(
a− ib

|z|2

)
= (a+ ib) ·

(
a− ib

|z|2

)
=

a2

|z|2
+

b2

|z|2
=
a2 + b2

|z|2
=
a2 + b2

a2 + b2
= 1.

In general to find the following for c+ id 6= 0

a+ ib

c+ id

we use the trick
a+ ib

c+ id
=

(a+ ib)(c− id)

(c+ id)(c− id)
=

(a+ ib)(c− id)

(c2 + d2)
.
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It remains to show (10) and (11). Notice that the following hold

(a) w · z̄ = z · w̄ by (1) and (5).

(b) u+ ū = 2Re(u) for all complex numbers u = x+ iy, since

u+ ū = (x+ iy) + (x− iy) = 2x = 2Re(u).

(c) Re(u) ≤ |u| for all complex numbers u = x + iy, since Re(u) = x ≤
√
x2 ≤√

x2 + y2 = |u|.

(11) follows from (10). We put z1 = z − w and z2 = w. Then (10) yields

|z| = |z1 + z2| ≤ |z1|+ |z2| = |z − w|+ |w|.

Therefore |z| − |w| ≤ |z − w|, showing (11).

We have

|z + w|2 (1)
= (z + w)(z + w)

(3)
= (z + w)(z̄ + w̄)

= zz̄ + ww̄ + zw̄ + z̄w

= |z|2 + |w|2 + zw̄ + zw̄ by (a)

= |z|2 + |w|2 + 2Re(zw̄) by (b)

≤ |z|2 + |w|2 + 2|zw̄| by (c)

= |z|2 + |w|2 + 2|z| · |w| by (9) and (1)

= (|z|+ |w|)2 .�

Geometrically the inequality (10) merely asserts that the length of side AC of the
triangle ABC cannot exceed the sum of the lengths of the sides AB and BC; equality is
possible only when A,B and C lie on the same line. Hence the name triangle inequality.

Geometrical representation of the multiplication The geometrical interpreta-
tion of multiplication is more involved. We first look at complex numbers z = a + ib
with |z| =

√
a2 + b2 = 1. In the complex plane these are the complex numbers located

on the unit circle. In this case, z can be written in the form

z = (cos θ, sin θ) = cos θ + i sin θ,

for some number θ (angle of θ radians).
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An arbitrary complex number w 6= 0 can be written in the form w = r · z with r a
positive real number and z a complex number lying on the unit circle.

Since w = |w| w
|w| , this follows with r = |w| and z = w

|w| .

To see this notice that if w = x+ iy, then
∣∣∣ w
|w|

∣∣∣ = |w|
|w| = 1.

As a result, any non-zero complex number can be written

w = r(cos θ, sin θ) = r(cos θ + i sin θ),

for some real r > 0 and for some real number θ (angle of θ radians).
This is called the polar form of the complex number w.

The number r is unique (it equals |w|), but θ is not unique; if θ0 is one possibility, then
the others are θ0 + 2πn, for n ∈ Z.

Definition: Any of the real numbers θ such that w = r(cos θ + i sin θ), with r = |w|
is called an argument of w.

To find an argument θ for w = x+ iy, we may note that the equation

x+ iy = w = |w|(cos θ, sin θ) = |w|(cos θ + i sin θ)

means that x = |w| cos θ and y = |w| sin θ. So, for example, if x > 0 we can take

θ = arctan(tan θ) = arctan

(
sin θ

cos θ

)
= arctan

y

x
.

If x = 0, we can take θ = π
2

when y > 0 and θ = 3π
2

when y < 0.

To describe the product of complex numbers geometrically we need an important for-
mula.
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Theorem 7.2: For all real numbers u, v:

(a) sin(u+ v) = sinu · cos v + cosu · sin v,

(b) cos(u+ v) = cosu · cos v − sinu · sin v.

Proof: It will be given at the end of this Chapter.

The product of two non-zero complex numbers

z = r(cos θ + i sin θ),

w = s(cos δ + i sin δ),

is given by

z · w = rs(cos θ + i sin θ)(cos δ + i sin δ)

= rs [(cos θ cos δ − sin θ sin δ) + i(sin δ cos θ + sin θ cos δ)]
(a)(b)
= rs[cos(θ + δ) + i sin(θ + δ)].

Thus, the absolute value of a product is the product of the absolute values of the
factors, while the sum of any argument for each of the factors will be an argument for
the product.

Geometrically, multiplication of two complex numbers z and w with |z| = |w| = 1 and
arguments θ and δ means that we add the angles θ and δ.

There is an important formula for the powers of complex numbers.

7.3 Powers of complex numbers

De Moivre’s theorem 7.3 For all integers n ≥ 0,

zn = |z|n(cosnθ + i sinnθ),

for any argument θ of z.
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Proof: by Mathematical Induction.
For n = 0 the proof is clear.
Now suppose this is true for n. We have to show that it holds for n+ 1.

zn+1 = zn · z = |z|n(cosnθ + i sinnθ)|z|(cos θ + i sin θ)

= |z|n+1[cos(nθ + θ) + i sin(nθ + θ)]

by the computation immediately following Theorem 7.2. We conclude by writing

zn+1 = |z|n+1[cos(n+ 1)θ + i sin(n+ 1)θ].

De Moivre’s Theorem also holds for negative integers n < 0. This can be seen as
follows:
Let k = −n. Then

zn =
1

zk
=

1

|z|k(cos kθ + i sin kθ)

=
(cosnθ + i sinnθ)

|z|k(cos kθ + i sin kθ)(cosnθ + i sinnθ)
=

(cosnθ + i sinnθ)

|z|k(cos(kθ + nθ) + i sin(kθ + nθ)

=
|z|n(cosnθ + i sinnθ)

cos(kθ + nθ) + i sin(kθ + nθ)
=
|z|n(cosnθ + i sinnθ)

cos(0) + i sin(0)

= |z|n(cosnθ + i sinnθ).

Definition: We denote by arg(z) an argument of the complex number z. Note that
arg(z) is only determined up to integer multiples of 2π. It is necessary to remove this
ambiguity, so by convention the value of the argument θ of z is chosen so that it lies in
the interval −π < θ ≤ π. This value of θ is called the principal value of the argument
and denoted by Arg(z).

Corollary 7.4: (i) arg(z · w) = arg(z) + arg(w).

(ii) arg(z1 · z2 · · · · · zn) = arg(z1) + · · ·+ arg(zn).

(iii) Let w 6= 0 arg
(

z
w

)
= arg(z)− arg(w).

Proof: (i) Let z = r(cos θ + i sin θ) and w = s(cos δ + i sin δ), where r, s ∈ R and
r, s ≥ 0. Then arg(z) = θ and arg(w) = δ. We computed earlier that

z · w = rs[cos(θ + δ) + i sin(θ + δ)].

We can conclude that arg(z · w) = θ + δ = arg(z) + arg(w).

(ii) follows by repeated applications of (i).
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(iii) By de Moivre’s theorem we have

arg

(
1

w

)
= arg

(
w−1

)
= −δ.

So by (i) we get

arg
( z
w

)
= arg

(
z · 1

w

)
= arg(z) + arg

(
1

w

)
= θ − δ = arg(z)− arg(w).

Let z = x+ iy, we want to determine Arg(z), the principal value of the argument of z.

If x = 0 and y > 0, then Arg(z) = π
2
.

If x = 0 and y < 0, then Arg(z) = −π
2
.

If x ≥ 0 and y = 0, then Arg(z) = 0.

If x < 0 and y = 0, then Arg(z) = π.

If

1. x > 0, y > 0, then Arg(z) = arctan y
x
;

2. x < 0, y > 0, then Arg(z) = π − arctan
∣∣∣ y
x

∣∣∣;
3. x < 0, y < 0, then Arg(z) = arctan y

x
− π;

4. x > 0, y < 0, then Arg(z) = − arctan
∣∣∣ y
x

∣∣∣.
7.3.1 Examples

(i) Find the Cartesian form of the complex number z for which |z| = 3 and arg(z) = π
6
.

Solution: Here r = 3 and θ = arg(z) = π
6
, so

x = 3 cos
π

6
=

3
√

3

2
and y = 3 sin

π

6
=

3

2
.

(ii) Find the modulus-argument form of z = −5− i5
√

3.

Solution: As z = −5− i5
√

3 we have x = −5 and y = −5
√

3, so

r =

√
(−5)2 + (−5

√
3)2 =

√
100 = 10
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and since z lies in the third quadrant [i.e., (3) applies] we get

Arg(z) = arctan
√

3− π = −2π

3

(iii) Given z = 2
[
cos π

4
+ i sin π

4

]
and w = 3

[
cos π

3
+ i sin π

3

]
, find (a) z · w and (b) z

w
.

Solution:

z · w = 2 · 3
[
cos

(π
4

+
π

3

)
+ i sin

(π
4

+
π

3

)]
= 6

[
cos

7π

12
+ i sin

7π

12

]
,

z

w
=

2

3

[
cos

(π
4
− π

3

)
+ i sin

(π
4
− π

3

)]
=

2

3

[
cos

−π
12

+ i sin
−π
12

]
=

2

3

[
cos

π

12
− i sin

π

12

]
.

(iv) Find (1 + i)25.

Solution: Setting z = 1 + i we see that r = |z| =
√

2 and from rule (1) above for
determining Arg(z), we find

θ = Arg(z) = arctan 1 =
π

4
.

Thus

z25 =
[√

2
(
cos

π

4
+ i sin

π

4

)]25

de Moivre
= (

√
2)25

(
cos

25π

4
+ i sin

25π

4

)
= (

√
2)25

(
cos

π

4
+ i sin

π

4

)
= (

√
2)25

(
1√
2

+ i
1√
2

)
= 2

25
2 · 2−1(1 + i) = 212(1 + i) .

(v) Find (2
√

3− 2i)30.

Solution: Setting z = 2
√

3− 2i we see that r = 4 and from rule (4) above

Arg(z) = − arctan
∣∣∣ −2

2
√

3

∣∣∣ = − arctan
1√
3

= −π
6
.

Thus

z30 =

[
4

(
cos

(
−π
6

)
+ i sin

(
−π
6

))]30

de Moivre
= (4)30

[
cos

(
−30π

6

)
+ i sin

(
−30π

6

)]
= (4)30 [cos(−5π) + i sin(−5π)] = (4)30 [cos(5π)− i sin(5π)]

= (4)30 [cos(π)− i sin(π)] = (4)30 cos(π) = −430 .
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(vi) Find sin 5θ in terms of sin θ and cos θ.

Solution:
Let a = cos θ and b = sin θ. We have:

cos 5θ + i sin 5θ
de Moivre

= (cos θ + i sin θ)5 = (a+ ib)5 .

We can write

cos 5θ + i sin 5θ = a5(ib)0 + 5a4(ib)1 +
5 · 4
1 · 2

a3(ib)2 +
5 · 4
1 · 2

a2(ib)3 + 5a1(ib)4 + a0(ib)5.

We can write

cos 5θ + i sin 5θ = a5 + i5a4b1 − 10a3b2 − i10a2b3 + 5a1b4 + ib5.

Notice that the previous equation yields

cos 5θ = a5 − 10a3b2 + 5a1b4 ,

and
i sin 5θ = +i5a4b− i10a2b3 + ib5 .

Equating imaginary parts gives

sin 5θ = 5a4b− 10a2b3 + b5 .

Finally we have

sin 5θ = 5(cos θ)4 sin θ − 10(cos θ)2(sin θ)3 + (sin θ)5 .

7.4 Roots of complex numbers and polynomials

Theorem 7.5: Every non-zero complex number has exactly n complex nth roots.
More precisely, for any complex number w 6= 0 and any natural number n, there are
precisely n different complex numbers z such that zn = w.

Proof: Let w = s(cos θ + i sin θ) with s = |w| and some number θ. Then a complex
number

z = r(cos δ + i sin δ)

with r > 0 satisfies zn = w if and only if

rn(cosnδ + i sinnδ) = s(cos θ + i sin θ),

which happens if and only if
rn = s

and
(cosnδ + i sinnδ) = (cos θ + i sin θ).
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From the first equation it follows that

r = s
1
n .

From the second equation it follows that for some integer k we have

θ = nδ − 2kπ,

so that

δ = δk =
θ

n
+

2kπ

n
.

Conversely, if we choose

r = s
1
n

and some δk as above, then the number z = r(cos δk + i sin δk) will satisfy

zn = w.

To determine the number of nth roots of w, it is therefore only necessary to determine
which such z are distinct.
Now, any integer k can be written as k = nq + k∗ for some integer q and some integer
k∗ between 0 and n− 1. Then,

(cos δk + i sin δk) = (cos δk∗ + i sin δk∗),

since

cos δk = cos

(
θ

n
+

2kπ

n

)
= cos

(
θ

n
+

2nqπ + 2k∗π

n

)
= cos

(
θ

n
+ 2qπ +

2k∗π

n

)
= cos

(
θ

n
+

2k∗π

n

)
= cos δk∗ ,

and similarly sin δk = sin δk∗ . This shows that every z satisfying zn = w can be written
as

z = s
1
n (cos δk + i sin δk) for k = 0, 1, 2, · · · , n− 1.

However, it is easy to see that these numbers are all different, since any two δk for
k = 0, 1, 2, · · · , n− 1 differ by less than 2π.

Corollary 7.6: Let w 6= 0 and n be a natural number. The n distinct roots
z0, · · · , zn−1 of w = s(cos θ + i sin θ) are given by

zk = n
√
s

[
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

)]
,

with k = 0, 1, · · · , n− 1. Here n
√
s is the nth positive real root of s.

Proof: This was proved in the proof of Theorem 7.5.
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7.4.1 Examples:

(1) Find the 8th roots of w = 1.
Solution:
1 = cos 0 + i sin 0, so setting w = 1 we see that r = |w| = 1 and θ = arg(w) = 0. Thus
the eight roots are

zk = cos

(
2kπ

8

)
+ i sin

(
2kπ

8

)
= cos

(
kπ

4

)
+ i sin

(
kπ

4

)
,

with k = 0, 1, · · · , 7.
The locations of these points around the unit circle are as follows:

w

w
w

w

w

w

w

0

w1

2

3

4

5

6

7

π/4π/4π/4π/4

π/4

π/4
π/4 π/4

π/4

π/4

It is easily seen that

w0 = 1 w1 =
(1 + i)√

2
w2 = i w3 =

(−1 + i)√
2

w4 = −1 w5 =
(−1− i)√

2
w6 = −i w7 =

(1− i)√
2

.

(2) Find the 5th roots of w =
√

3− i.
Solution:
We have w = 2[cos(−π/6) + i sin(−π/6)] and we see that |w| = 2 and arg(w) = −π/6.
Thus, the five roots are seen to be given by

zk = 2
1
5

[
cos

(
2kπ − π

6

5

)
+ i sin

(
2kπ − π

6

5

)]
,

with k = 0, 1, 2, 3, 4. Consequently the required roots are

zk = 2
1
5

[
cos

(
(12k − 1)π

30

)
+ i sin

(
(12k − 1)π

30

)]
,

with k = 0, 1, 2, 3, 4.

(3) Find i
2
3 .
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Solution:
If we find the three cube roots of i, that is, if we solve the equation z3 = i, for the
numbers z0, z1, z2, the three values of i

2
3 will be z2

0 , z
2
1 , z

2
2 .

This follows by setting z = i
1
3 , because then z3 = i, so that z2 = i

2
3 .

Setting w = i = cos π
2

+ i sin π
2
, it follows that r = |w| = 1 and θ = arg(w) = π

2
, and so

the three cube roots of i are

zk = cos

(
2kπ + π

2

3

)
+ i sin

(
2kπ + π

2

3

)
,

with k = 0, 1, 2. Hence we can write

z0 = cos
π

6
+ i sin

π

6
=

1

2
(
√

3 + i),

z1 = cos
5π

6
+ i sin

5π

6
=

1

2
(−
√

3 + i),

z2 = cos
9π

6
+ i sin

9π

6
= −i,

so the three roots of i
2
3 are

z2
0 =

1

2
(1 + i

√
3),

z2
1 =

1

2
(1− i

√
3),

z2
2 = −1.

(4) Let z 6= 1 be any one of the n roots of zn = 1. Prove that for any positive integer
n > 1

1 + z + z2 + · · ·+ zn−1 = 0.

Solution:
Set s = 1 + z + · · ·+ zn−1 and multiply by z to obtain zs = z + z2 + · · ·+ zn. Thus,

zs = z + z2 + · · ·+ zn ⇒ zs = z + z2 + · · ·+ zn + 1− 1 ⇒ zs− s = zn − 1

⇒ s(1− z) = 1− zn ⇒ s =
1− zn

1− z
.

However, zn = 1 and 1− z 6= 0, we see that s = 0 and the result follows.

7.4.2 Polynomials and their root

A fundamental property of C is that any polynomial p(z) = a0+a1z+ · · ·+anz
n (where

the coefficients an are complex and an 6= 0) has a root.

Let c be a root of p(z). Then

0 = a0 + a1c+ · · ·+ anc
n,
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and hence
0̄ = ā0 + ā1c̄+ · · ·+ ānc̄

n = 0.

Suppose all ak are reals. Then
ak = āk,

i.e.,
0 = a0 + a1c̄+ · · ·+ anc̄

n = 0,

so c̄ is also a root of p(z).

Theorem 7.7: If c is a root of a polynomial with real coefficients, then c̄ is also a
root.
Proof: We just did it.

7.4.3 Examples

(1) Since i is a root of z2 + 1, the other root will be ī = −i.

(2) Given that 2− 3i is a root of

p(z) = z4 − 6z3 + 26z2 − 46z + 65

find the other 3 roots.
Since p(z) has real coefficients, another root is 2 + 3i. We can write

p(z) = [z − (2− 3i)] · [z − (2 + 3i)] · q(z) = (z2 − 4z + 13) · q(z),
for a quadratic polynomial q(z).
By long division we have

z4 −6z3 +26z2 −46z +65
∣∣∣z2 − 4z + 13

−z4 +4z3 −13z2 z2−2z+5
−2z3 +13z2 −46z +65 −2z
2z3 −8z2 +26z

5z2 −20z +65
−5z2 +20z −65 .

Thus q(z) = z2 − 2z + 5. Solving q(z) = 0 gives

z = 1±
√

1− 5 = 1±
√
−4 = 1± 2

√
−1 = 1± 2i.

So the four roots are 2± 3i and 1± 2i.

Recall that every quadratic equation

ax2 + bx+ c = 0 (a 6= 0)

can be solved to give

x =
−b±

√
b2 − 4ac

2a
.

Of course, if b2 − 4ac < 0 there are no real solutions. But you should keep in mind
that there are always solutions in C.
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7.5 Exponential function, trigonometric functions

and the hyperbolic functions

The exponential function exp is actually defined by a so-called power series via

ex =
+∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

More precisely, ex is the limit of the sequence {sn}, where

sn = 1 + x+
x2

2!
+ · · ·+ xn

n!
.

Similarly, the functions cos and sin can be defined by a power series:

cosx =
+∞∑
k=0

(−1)k x2k

(2k)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

sin x =
+∞∑
k=0

(−1)k x2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

These functions can be defined on the complex numbers as well. For complex z we
define

ez =
+∞∑
k=0

zk

k!
= 1 + z +

z2

2!
+
z3

3!
+ · · ·

cos z =
+∞∑
k=0

(−1)k z2k

(2k)!
= 1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

sin z =
+∞∑
k=0

(−1)k z2k+1

(2k + 1)!
= z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

If we replace z by iz in the series for ez and make a rearrangement of the terms
something particularly interesting happens:

eiz = 1 + (iz) +
(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+

(iz)5

5!
+ · · ·

= 1 + iz − z2

2!
− iz3

3!
+
z4

4!
+
iz5

5!
+ · · ·

=

(
1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

)
+ i

(
z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

)
= cos z + i sin z.

It is clear from the definition (i.e., the power series) that sin(−z) = − sin z and that
cos(−z) = cos z. So we also have

e−iz = ei(−z) = cos z − i sin z.
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For complex numbers z and w we also have the functional equation

ez · ew = ez+w.

If we write a complex number in Cartesian form, z = x+ iy, we thus arrive at

ez = ex+iy = ex · eiy = ex(cos y + i sin y),

so that |ez| = ex and arg(ez) = y.
From the equations for eiz and e−iz we can derive the formulas (Euler’s equations)

sin z =
eiz − e−iz

2i
(7.1)

cos z =
eiz + e−iz

2
(7.2)

The development of complex power series thus places the exponential function at the
very core of the development of the elementary functions – it reveals a connection
between the trigonometric and exponential functions which was never imagined when
these functions were first defined and which could have never been discovered without
the use of complex numbers.

Recall that we defined

sinh x =
ex − e−x

2

coshx =
ex + e−x

2

for real numbers x.

These functions can be extended to the complex numbers by letting

sinh z =
ez − e−z

2

cosh z =
ez + e−z

2

From the complex view point the trigonometric and the hyperbolic functions are closely
related

sinh(iz) =
eiz − e−iz

2

(7.1)
= i sin z

cosh(iz) =
eiz + e−iz

2

(7.2)
= cos z

sin(iz)
(7.1)
=

e−z − ez

2i
= (−i)e

−z − ez

2
= (i)

ez − e−z

2
= i sinh z

cos(iz)
(7.2)
=

e−z + ez

2
= cosh z
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Thus, we have just shown that

sin z =
sinh(iz)

i
cos z = cosh(iz)

sinh z =
sin(iz)

i
cosh z = cos(iz)

Theorem 7.8: For all complex numbers z, w:

(a) sin(z + w) = sin z cosw + cos z sinw,

(b) cos(z + w) = cos z cosw − sin z sinw.
Proof: Use equations (7.1) and (7.2).

Remark: Certain properties of exp and the trigonometric functions that hold for real
arguments are no longer true of complex arguments. For example, exp takes on every
complex value except 0 and sin takes on every complex value. In particular, there are
complex numbers z and w such that ez = −50000 and sin z = 50000.
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Partial differentiation
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8.1 Many-variable functions

In the previous chapters we have restricted ourselves to the study of functions of only
one variable x: f : A −→ B, with domain A ⊂ R and range B ⊂ R, i.e., for all
x ∈ A, f(x) ∈ B.

Let us suppose we need to build the function that associates to each point in space its
temperature.

A point in space is determined by three variables (x, y, z) ∈ R3. We define the func-
tion temperature f that associates to each point in space its temperature f(x, y, z) as
follows:

f : R3 −→ R f(x, y, z) = x · y · z ∈ R.

Note that the function f depends on three variables x, y, z. f is a real-valued function
of three real variables.

Definition (provisional): A many-variable (n) function is a rule which assigns, to
n real numbers in its domain, some real number in its range. An n-variable function f
is defined as follows:

f : Rn −→ R f(x1, x2, · · · , xn) ∈ R.

67
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8.1.1 Examples of many-variable functions

1. f1 : R2 −→ R, f1(x, y) = x2y + xy2.

2. f2 : [0,+∞)× [0,+∞) −→ [0,+∞), f2(x, y) =
√
xy.

3. f3 : (0,+∞)× (0,+∞)× (0,+∞) −→ (0,+∞), f3(x, y, z) = 1
xyz
.

4.

f4 : R3 −→ R, f4(x, y, z) =



0 if x is rational y is rational z is rational
1 if x is rational y is rational z is irrational
2 if x is rational y is irrational z is rational
3 if x is rational y is irrational z is irrational
4 if x is irrational y is rational z is rational
5 if x is irrational y is rational z is irrational
6 if x is irrational y is irrational z is rational
7 if x is irrational y is irrational z is irrational

5.

f5 :
(
−π

2
,
π

2

)
×

(
−π

2
,
π

2

)
−→ R, f5(x, y) = tan(x) · tan(y) =

sin(x)

cos(x)

sin(y)

cos(y)
.

8.1.2 Building new functions

Suppose
f, g : A ⊂ Rn −→ R.

Define
f + g : A −→ R

by (f + g)(x1, x2, · · · , xn) = f(x1, x2, · · · , xn) + g(x1, x2, · · · , xn), the sum of f and g.

Define
f − g : A −→ R

by (f − g)(x1, x2, · · · , xn) = f(x1, x2, · · · , xn) − g(x1, x2, · · · , xn), the difference of f
and g.

Define
(f · g) : A −→ R

by (f · g)(x1, x2, · · · , xn) = f(x1, x2, · · · , xn) · g(x1, x2, · · · , xn), the product of f and g.

If g(x1, x2, · · · , xn) 6= 0 for all (x1, x2, · · · , xn) ∈ A, we also define(
f

g

)
: A −→ R

by
(

f
g

)
(x1, x2, · · · , xn) = f(x1,x2,··· ,xn)

g(x1,x2,··· ,xn)
, the quotient of f and g.
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8.2 Limits and continuity

Provisional definition: The function f will be said to have the limit L as x =
(x1, x2, · · · , xn) tends to a = (a1, a2, · · · , an), if when x ∈ Rn is arbitrarily close to, but
unequal to a ∈ Rn, f(x) is arbirtrarily close to L.

The statement “tends to a” is written as x → a, and when the limit of f(x) exists as
x→ a, this will be shown by writing

lim
x→a

f(x) = L.

8.2.1 Elementary properties of limits

Suppose x ∈ A, a ∈ Rn, that

f, g : A ⊂ Rn −→ R,

and that
lim
x→a

f(x) = L and lim
x→a

g(x) = M.

Then we have

(1) limx→a[b · f(x)] = b · L, with b ∈ R.

(2) limx→a[f(x)± g(x)] = L±M.

(3) limx→a[f(x) · g(x)] = L ·M.

(4) If M 6= 0, limx→a

[
f(x)
g(x)

]
= L

M
.

Example: Find

lim
(x,y)→(2,2)

[
x2 + 5x+ 3

2x3 − x+ 4

] [
y2 + 5y + 3

2y3 − y + 4

]
.

We can write

lim
(x,y)→(2,2)

[
22 + 5 · 2 + 3

2 · 23 − 2 + 4

] [
22 + 5 · 2 + 3

2 · 23 − 2 + 4

]
=

17

18
· 17

18
.

Example: Find

lim
(x,y)→(1,1)

[
2x2 + x− 3

x2 + x− 2

] [
2y2 + y − 3

y2 + y − 2

]
.

We can write

lim
(x,y)→(1,1)

[
2x2 + x− 3

x2 + x− 2

] [
2y2 + y − 3

y2 + y − 2

]
= lim

(x,y)→(1,1)

[
(x− 1)(2x+ 3)

(x− 1)(x+ 2)

] [
(y − 1)(2y + 3)

(y − 1)(y + 2)

]
= lim

(x,y)→(1,1)

[
(2x+ 3)

(x+ 2)

] [
((2y + 3)

(y + 2)

]
=

5

3
· 5

3
.
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8.2.2 Continuity

If f is an arbitrary function, it is not necessarily true that

lim
x→a

f(x) = f(a).

Definition: Suppose x ∈ A, a ∈ Rn and that

f : A ⊂ Rn −→ R.

The function f is continuous at a if

lim
x→a

f(x) = f(a).

Without lack of generality we will restrict ourselves to functions of two real
variables in most of what follows.

8.3 Differentiation

We recall at this point our previous definition of differentiable function:

Definition: The function f is differentiable at a if

lim
h→0

f(a+ h)− f(a)

h

exists.
We define, f ′(a) to be that limit, namely,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

For a function of two variables f(x, y) we may define the derivative with respect to
either x or y.

We consider the derivative with respect to x, for example, by saying that it is that
for a one-variable function when y is held fixed and treated as a constant (or to y, for
example, by saying that it is that for a one-variable function when x is held fixed and
treated as a constant).

To signify that a derivative is with respect to x, but at the same time to recognise that
a derivative with respect to y also exists, the former is denoted by ∂f/∂x and is called
the partial derivative of f(x, y) with respect to x.

Similarly, the partial derivative of f(x, y) with respect to y is denoted by ∂f/∂y.
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Definition: We define the partial derivative of f(x, y) with respect to x as

∂f(x, y)

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
,

provided that the limit exists.

We define the partial derivative of f(x, y) with respect to y as

∂f(x, y)

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h
,

provided that the limit exists.

The extension to the general n−variable case is given below.

We define the partial derivative of f(x1, x2, · · · , xn) with respect to xk as

∂f(x1, x2, · · · , xn)

∂xk

= lim
h→0

f(x1, x2, · · · , xk + h, · · · , xn)− f(x1, x2, · · · , xk, · · · , xn)

h
,

provided that the limit exists.

8.3.1 Partial differentiation for two-variable functions

For a two-variable function f(x, y), we can compute two first partial derivatives:

∂f

∂x
and

∂f

∂y
,

and four first partial derivatives:

∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
= fxx

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
= fyx

∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
= fxy

∂

∂y

(
∂f

∂y

)
=

∂2f

∂y2
= fyy

Theorem: If the second partial derivatives of f(x, y) are continuous at all points
(x, y) in its domain, we have

∂2f

∂y∂x
=

∂2f

∂x∂y
.
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Example: Find the first and second partial derivatives of the function

f(x, y) = 2x3y2 + y3.

Solution:
∂f(x, y)

∂x
= 2 · 3x2 · y2,

∂f(x, y)

∂y
= 2 · x3 · 2 · y + 3y2,

∂2f(x, y)

∂x2
= 2 · 3 · 2x · y2,

∂2f(x, y)

∂y2
= 2 · x3 · 2 + 3 · 2y,

∂2f(x, y)

∂y∂x
= 2 · 3x2 · 2y

8.4 Stationary values of many-variable functions

Reminder: We recall that a function f(x) of one variable has a stationary point at
x = x0 if

df

dx

∣∣∣
x=x0

= 0.

A stationary point is:

(i) a minimum if df2/dx2 > 0 at x = x0.

(ii) a maximum if df2/dx2 < 0 at x = x0.

(iii) a point of inflection if df2/dx2 = 0 at x = x0.

We now consider the stationary points of functions of two variables.

Definition: The function f(x, y) has a stationary point (minimum, maximum or
saddle point) at (x0, y0) if

∂f(x, y)

∂x

∣∣∣
(x0,y0)

= 0 and
∂f(x, y)

∂y

∣∣∣
(x0,y0)

= 0.

We now turn our attention to determining the nature of a stationary point of a function
of two variables, i.e., whether it is a maximum, a minimum or a saddle point.
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Definition: The function f(x, y) has a stationary point at (x0, y0) if fx = fy = 0 at
(x0, y0). The stationary points may be classified further as follows:

(i) minima if both fxx and fyy are positive and f 2
xy < fxxfyy.

(ii) maxima if both fxx and fyy are negative and f 2
xy < fxxfyy.

(iii) saddle points if fxx and fyy have opposite signs or f 2
xy > fxxfyy.

Example: Show that the function f(x, y) = x3 · exp(−x2 − y2) has a maximum at
the point (

√
3/2, 0), a minimum at (−

√
3/2, 0) and a stationary point at (0, 0) which

nature cannot be determined by the above procedures.
Solution: Do at home.

Example: Find and evaluate the maxima, minima and saddle points of the function
f(x, y) = xy(x2 + y2 − 1).
Solution:
We compute

fx = y(x2 + y2 − 1) + xy(2x) fy = x(x2 + y2 − 1) + xy(2y)

fxx = y(2x) + y(4x) = 6xy fyy = x(2y) + x(4y) = 6xy

fxy = (x2 + y2 − 1) + y(2y) + x(2x) = 3x2 + 3y2 − 1.

We solve for fx = 0 and fy = 0. The solutions are

(0, 0), (±1, 0), (0,±1), ±(1/2, 1/2), ±(1/2,−1/2).

We classify them as follows:

(0, 0) ⇒ f 2
xy = 1 > fxxfyy = 0 ⇒ saddle point,

(±1, 0) ⇒ f 2
xy = 4 > fxxfyy = 0 ⇒ saddle point,

(0,±1) ⇒ f 2
xy = 4 > fxxfyy = 0 ⇒ saddle point,

±(1/2, 1/2) ⇒ fxx =
3

2
> 0 and fyy =

3

2
> 0 ⇒ minimum,

±(1/2,−1/2) ⇒ fxx = −3

2
< 0 and fyy = −3

2
< 0 ⇒ maximum.
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9.1 Introduction

We now start the “mathematical analysis” part of the module. For the moment we
shall be concerned with looking at infinite series more closely, and this will require the
notion of a sequence and the limit of a sequence.

We have already seen that there are infinite series for ex, cosx, sinx, etc. and they come
up also as solutions of certain differential equations. The most important idea that
comes up first with an infinite series is whether it can be said to have a sum, whether
it converges. Often we are more interested in having a sum, rather than knowing what
the sum is.

Here is a simple example which shows that infinite sums can behave differently than
finite sums and why we need to be rather cautious. For the moment just take it as
correct that

log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

The following manipulations lead to quite a paradoxical result:

log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ · · ·

= 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
− 1

14
− 1

16
+ · · ·

75
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the pattern here is one positive followed by two negative ones. We group terms as
follows:

log 2 =

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+

(
1

7
− 1

14

)
− 1

16
+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+

1

14
− 1

16
+ · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ · · ·

)
=

1

2
log 2,

so log 2 = (log 2)/2, implying that log 2 = 0. But that is not true.

This contradiction depends on a step which takes for granted that operations valid
for finite sums necessarily have analogues for infinite sums. Note that the numbers of
the second infinite sum are a rearrangement of the numbers of the first sum. So what
can happen is that if the order of the terms of an infinite sum is changed, we get two
different outcomes. In this respect infinite sums can behave very differently from finite
sums.

Before we can start over investigations of infinite series we should study infinite se-
quences first since the “sum” of an infinite series is defined as a sequence of approxi-
mations to its “sum”.

The idea of an infinite sequence is so natural a concept that it is tempting to dispense
with a definition altogether. One frequently writes simply “an infinite sequence”

a1, a2, a3, a4, . . . ,

the three dots indicating that the numbers ai continue to the right “forever”. The
important point about an infinite sequence is that for each natural number n, there is
a real number an. This sort of correspondence is precisely what functions are meant
to formalise.

9.2 Sequences

Definition 9.1: An infinite sequence of real numbers is a function whose domain is
N.
From the point of view of this definition, a sequence should be designated by a single
better like a and particular values by

a(1), a(2), a(3), . . .

but the subscript notation
a1, a2, a3, . . .
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is almost always used instead, and the sequence is usually denoted by a symbol like

{an}.

Thus {n}, {(−1)n} and {1/n} denote the sequences α, β, γ defined by

αn = n, βn = (−1)n and γn =
1

n
.

Definition 9.2: A sequence {an} converges to L, in symbols

lim
n→+∞

an = L,

if for every ε > 0 there is natural number N such that, for all natural numbers n, if

n > N, then |an − L| < ε.

In addition to the terminology introduced in this definition, we sometimes say that the
sequence {an} approaches L or has the limit L.

A sequence {an} is said to converge if it converges to L for some L, and to diverge if
it does not converge.

To show that the sequence {γn} converges to 0 it suffices to observe that for every
ε > 0 there exists a natural number N such that ε > 1

N
. Then if n > N we have

γn =
1

n
<

1

N
< ε, so |γn − 0| < ε.

Examples 9.3: Let {δn = 2 + (−1)n · 1
2n} and {an =

√
n+ 1−

√
n}. Show that

(i) limn→+∞ δn = 2,

(ii) limn→+∞ an = 0.

Proof:

(i) Let ε > 0. Then ε > 1
N
> 0 for some natural number N . Then, if n > N we have

2n > n, so that ε > 1
2n and hence

|δn − 2| =
∣∣∣(−1)n · 1

2n

∣∣∣ =
∣∣∣ 1

2n

∣∣∣ =
1

2n
< ε.

(ii) To estimate
√
n+ 1−

√
n we can use an algebraic trick

√
n+ 1−

√
n =

(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

=
n+ 1− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n
.

Now let ε > 0. Pick K such that ε > 1
K

. Let N = K2. Then for n > N we get√
n >

√
N = K, so that

|an − 0| = |an| =
1√

n+ 1 +
√
n
<

1√
n
<

1

K
< ε.



78 9.2 Sequences

Remark: Above we used the fact that for every ε > 0 there exists a natural number
N such that ε > 1

N
. How do we find N? If ε is rational, i.e., ε = p

q
for some natural

numbers p, q, we can just pick N = q+ 1. If 0 < ε < 1 and ε = 0.a1a2a3 · . . . in decimal
expansion, we can let N = (ak + 1) · 10k, where ak is the first term with ak 6= 0.

What does it mean geometrically that

lim
n→+∞

bn = L?

If ε > 0 then we obtain an open interval (L− ε, L+ ε) = I with L being its centre.

Since limn→+∞ bn = L, there exists a natural number N such that, for all n > N ,
|bn−L| < ε. This means that, if n > N , then bn is in the open interval I. Thus almost
all terms of {bn} lie in the ε-neighbourhood of L.

Here almost all means all, except for finitely many.

Except for very simple examples like those from 9.3, it can be difficult to verify the
limit of a sequence directly from the definition. So we have to prove some general
theorems which bypass this difficulty and make the calculations easier. Note also that
not every sequence has a limit, e.g., {n}.

The usefulness of the limit concept depends partly on the fact that if a limit exists,
then it is unique.

Theorem 9.4: If a sequence has a limit, then that limit is unique.
Proof: Suppose

lim
n→+∞

an = L lim
n→+∞

an = M.

Aiming at a contradiction, suppose L 6= M . Choose ε = |L −M |/4, so ε > 0. Then
there exists N1 and N2 such that

|an − L| < ε for all n > N1 and |an −M | < ε for all n > N2.

Thus, for all n > max(N1, N2), we have

|L−M | = |L− an + an −M | ≤ |L− an|+ |an −M | ≤ 2ε,

so that 4ε ≤ 2ε which yields the absurd result that 4 ≤ 2.

Definition 9.5: A sequence {an} is bounded if there is a constant C such that
|an| < C holds for all n.
If a sequence is not bounded it is said to be unbounded.

Examples: The sequence {an} given by{
−1− 1

2
, 1 +

1

3
,−1− 1

4
, 1 +

1

5
, . . .

}
=

{
(−1)n + (−1)n 1

n+ 1

}
is bounded by C = 2.
On the other hand, the sequence {an} = {n} is unbounded.
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Theorem 9.6: A convergent sequence is bounded.
Proof: Suppose

lim
n→+∞

an = L.

Then there exists N such that n > N ⇒ |an − L| < 1. Let

A = max(|a1 − L|, |a2 − L|, . . . , |an − L|).

As a result, |an − L| < A+ 1 holds for all n. Therefore we have

|an| = |an − L+ L| ≤ |an − L|+ |L| < A+ 1 + |L|.

So with C = A+ 1 + |L| it follows that

|an| < C for all n.

The converse is false: the sequence

{0, 1, 0, 1, 0, 1, . . .}

is bounded but not convergent.

Notation: To simplify notation we will often write

an → L

rather than
lim

n→+∞
an = L.

To make our life easier we better develop some machinery.

Theorem 9.7: If
lim

n→+∞
an and lim

n→+∞
bn

both exist, then
(i)

lim
n→+∞

(an + bn) = lim
n→+∞

an + lim
n→+∞

bn.

(ii)
lim

n→+∞
(an · bn) = lim

n→+∞
an · lim

n→+∞
bn.

(iii) Moreover, if limn→+∞ bn 6= 0, then bn 6= 0 for all n > N for some N , and

lim
n→+∞

an

bn
=

limn→+∞ an

limn→+∞ bn
.

Proof: Let
lim

n→+∞
an = L and lim

n→+∞
bn = M.
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(i) Let ε > 0. Then there exist N1, N2 such that |an − L| < ε
2

for all n > N1 and
|bn −M | < ε

2
for all m > N2.

Set N = max(N1, N2). Then, for all n > N

|(an + bn)− (L+M)| = |(an − L) + (bn −M)| < |(an − L)|+ |(bn −M)| < ε

2
+
ε

2
= ε.

Hence
lim

n→+∞
(an + bn) = L+M.

Note that we used the triangle inequality.
The proofs of (ii) and (iii) are harder than that for (i) and are not given.

Corollary 9.8:

(i) If limn→+∞ an exists and c is a constant, then {can} converges too and

lim
n→+∞

can = c lim
n→+∞

an.

(ii) If limn→+∞ an and limn→+∞ bn both exist, then

lim
n→+∞

(an − bn) = lim
n→+∞

an − lim
n→+∞

bn.

(iii) If K is a natural number K > 1, then

lim
n→+∞

1

nK
= 0.

Proof:
(i) The sequence {bn} with bn = c converges to c. Thus, by Theorem 9.7 (ii) we get

lim
n→+∞

can = lim
n→+∞

bn · an = lim
n→+∞

an · lim
n→+∞

bn = c lim
n→+∞

an.

(ii) By (i) we have
lim

n→+∞
−bn = − lim

n→+∞
bn.

From this we arrive at (ii) using Theorem 9.7 (i).
(iii) We obviously have

lim
n→+∞

1

n
= 0.

Thus, using Theorem 9.7 we get

lim
n→+∞

1

n2
= lim

n→+∞

1

n
· lim

n→+∞

1

n
= 0 · 0 = 0.

Therefore,

lim
n→+∞

1

n3
= lim

n→+∞

1

n
· lim

n→+∞

1

n2
= 0 · 0 = 0, etc.
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9.2.1 Examples

(1) Let

an =
3n3 + 2n2 + 13n

2n3 + 16n2 + 5
.

Then

an =
3 + 2

n
+ 13

n2

2 + 16
n

+ 5
n3

.

By theorem 9.8 we get

lim
n→+∞

2

n
= 2 lim

n→+∞

1

n
= 2 · 0 = 0

and likewise

lim
n→+∞

13

n2
= 0,

16

n
→ 0 and

5

n3
→ 0.

Therefore, using Theorem 9.11(i) we get

3 +
2

n
+

13

n2
→ 3 and 2 +

16

n
+

5

n3
→ 2.

By 9.7 (iii) we thus get

lim
n→+∞

an =
limn→+∞

(
3 + 2

n
+ 13

n2

)
limn→+∞

(
2 + 16

n
+ 5

n3

) =
3

2
.

(2) Let

bn =
n2 − 2

n8 + 6n3 − 3n+ 8
.

Then

bn =
1
n6 − 2

n8

1 + 6
n5 − 3

n7 + 8
n8

→ 0

1
= 0.

(3) The sequence
1√
n
→ 0

since
1√
n
< ε

whenever

n >
1

ε2
.

(4) Does
lim

n→+∞
(
√
n2 + 1− n)

exist?

(
√
n2 + 1−n) =

(
√
n2 + 1− n)(

√
n2 + 1 + n)

(
√
n2 + 1 + n)

=
n2 + 1− n2

(
√
n2 + 1 + n)

=
1

(
√
n2 + 1 + n)

<
1

n
.

Thus the limit is 0.
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9.3 Divergence and convergence of sequences

If a sequence is not convergent then it is divergent. There are 4 types of divergence
but we shall just concentrate on 2 main ones which are closely related.

Note first that if {an} is unbounded, then it is divergent (as we have shown that
convergent ⇒ bounded by Theorem 9.6).

The converse is false: the sequence

{0, 1, 0, 1, 0, 1, . . .}

is divergent but not not unbounded.

In our first main type of divergence, the terms just keep on getting larger and larger
and we can make them as large as we please.

Definition 9.11: If for all K > 0 there is an integer N such that n > N ⇒ an > K,
we say that {an} diverges to +∞ (in symbols)

an → +∞.

Examples 9.12:

(1) {n}, {
√
n}, in fact {nr} for any r > 0. For example, {n 1

4} is divergent to +∞ since

given any K > 0, n
1
4 > K, when n > K4.

(2)

an =
n4 − 3n2 + 2

6n+ 5
=
n3 − 3n+ 2

n

6 + 5
n

=
n(n2 − 3) + 2

n

6 + 5
n

→ +∞.

(3) Define

bn =

{
2 if n is odd
n if n is even

so that b1 = 2, b2 = 2, b3 = 2, b4 = 4, b5 = 2, b6 = 6, . . . .

{bn} diverges, but not to +∞ because of the ever present 2.

(4) Let cn = (−1)nn. So c1 = −1, c2 = 2, c3 = −3, . . . .

{cn} is divergent, but not to +∞ since there is no N such that

cn > 10 for all N.

There is a similar notion of divergence to −∞.
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Definition 9.13: {an} diverges to −∞ (in symbols)

an → −∞.

if given M < 0, there exists a natural number N such that

n > N ⇒ an < M.

Note that an → −∞ ⇐⇒ −an → +∞.

Examples 9.14: {−n}, {−3n2 + 15n}, etc.

Definition 9.15: A sequence {an} is increasing (decreasing) if an+1 ≥ an (an+1 ≤ an)
for all n.
A sequence {an} is strictly increasing (strictly decreasing) if an+1 > an (an+1 < an) for
all n.
Examples 9.16:

(1) 1, 1, 2, 2, 3, 3, . . . increasing.

(2) 1, 0, 0, 0, . . . decreasing.

(3) 1, 2, 3, 4, . . . strictly increasing.

(4) 1,
1

2
,
1

3
,
1

4
, . . . strictly decreasing.

Theorem 9.17: If a sequence {an} is bounded and it is increasing (decreasing), then
it has a limit.
Proof: This is a result about the construction of real number that cannot be proved
in this course.
Examples 9.18:

(1) Set an = 1 +
n

n+ 1
. Thus, a1 = 1 + 1/2,a2 = 1 + 2/3, a3 = 1 + 3/4. We conclude

that {an} is strictly increasing.

an = 1 +
n

n+ 1
= 1 +

n(n+ 2)

(n+ 1)(n+ 2)
= 1 +

n2 + 2n

(n+ 1)(n+ 2)
,

an+1 = 1 +
n+ 1

n+ 2
= 1 +

(n+ 1)(n+ 1)

(n+ 1)(n+ 2)
= 1 +

n2 + 2n+ 1

(n+ 1)(n+ 2)
,

so an < an+1. The sequence {an} is also bounded by 2. Actually, an → 2.

(2) Let

cn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− log n (n ≥ 1).

It can be shown that {cn} is a decreasing sequence which is bounded. So it has a limit
γ. γ is called Euler’s constant. It is important but there is still a lot we do not know
about it, e.g., is it rational or irrational? We do know that γ ≈ 0.577.
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(3) Let

dn =

(
1 +

1

n

)n

.

It can be shown that this sequence is increasing and is bounded by 3. Hence the limit
of {dn} exists. It turns out that

lim
n→+∞

dn = e ≈ 2.7183 . . . .

Theorem 9.19: Let {an} be an unbounded sequence. If {an} is increasing (decreas-
ing) then

{an} → +∞ ({an} → −∞).

Proof: Not given.

We finally investigate the behaviour of {rn}.

Theorem 9.20: Let r be a fixed real number.

(i) If −1 < r < 1, then rn → 0.

(ii) If r = 1, then rn → 1.

(iii) If r ≤ −1, then {rn} diverges.

(iv) If r > 1, then rn → +∞.
Proof:

(i) If −1 < r < 1, then |r| < 1. If r = 0, then certainly rn → 0. So let r 6= 0 and let
0 < ε < 1. Pick a natural number N such that

N ≥ log ε

log |r|
.

Note that log |r| < 0 and log ε < 0, so

N ≥ log ε

log |r|
> 0.

Then, if n > N , we have

log(|r|n) = n log |r| < log ε

log |r|
· log |r| = log ε.

Hence |r|n < ε. Therefore we get

|rn − 0| = |rn| = |r|n < ε.

(ii) This is clear as r = 1 ⇒ rn = 1.

(iii) If r ≤ −1, rn will oscillate between values ≥ 1 and ≤ −1, so it clearly does not
converge.
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(iv) If r > 1, then r = 1 + h for some h > 0. We have

rn = (1 + h)n =
n∑

k=0

(
n

k

)
1n−khk = 1 +

(
n

1

)
h+ . . . > nh,

so if C > 0 and N ≥ C/h, then

rn > nh >
C

h
h = C for all n > N.

Summary: (i) If an = rn then an → 0 if −1 < r < 1.

(ii) an → 1 if r = 1.

(iii) Otherwise {an} diverges.

Examples 9.21:

(1) 3n → +∞ since 3 > 1.

(2) 12−n =

(
1

12

)n

→ 0 since −1 < 1/12 < 1.

(3) (−1)n5n = (−5)n diverges since −5 < −1.
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10.1 Introduction

Infinite series are introduced with the specific intention of considering sums of se-
quences, namely

a0 + a1 + a2 + · · ·
This is not an entirely straightforward matter, for the sum of infinitely many numbers
is as yet completely undefined. What can be defined are the partial sums

sn = a0 + a1 + a2 + · · ·+ an

and the infinite sum must be presumably defined in terms of these partial sums.

10.2 Infinite series

Definition 10.1: The sequence {an} is summable if the sequence {sn} converges,
where

sn = a0 + a1 + a2 + · · ·+ an.

In this case,
lim

n→+∞
sn

is denoted by
+∞∑
n=0

an,

87
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and is called the sum of the sequence {an}.
We also say that

+∞∑
n=0

an

converges (diverges) instead of saying that {sn} converges (diverges).
The most important of all infinite series are the geometric series

+∞∑
n=0

rn = 1 + r + r2 + r3 + · · ·

Only the cases |r| < 1 are interesting, since the individual terms do not approach 0 if
|r| ≥ 1, in which case

+∞∑
n=0

rn = 1 + r + r2 + r3 + · · ·

does not converge.
These series can be managed because the partial sums

sn = 1 + r + r2 + r3 + · · ·+ rn

can be evaluated in simple terms. The two equations

sn = 1 + r + r2 + r3 + · · ·+ rn

rsn = r + r2 + r3 + r4 + · · ·+ rn+1

lead to
sn(1− r) = 1− rn+1

or

sn =
1− rn+1

1− r
,

where division by r − 1 is valid since we assume that r 6= 1. It follows that:

Theorem 10.2:

+∞∑
n=0

rn = lim
n→+∞

sn = lim
n→+∞

1− rn+1

1− r
=

1

1− r
,

since |r| < 1. In particular

+∞∑
n=0

(
1

2

)n

=
+∞∑
n=0

1

2n
=

1

1− 1
2

= 2.

Thus
+∞∑
n=1

(
1

2

)n

= 1.
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The sum
+∞∑
n=0

(
1

2

)n

with an = (1/2)n has the property that an → 0. This turns out to be a necessary
condition for summability.

Theorem 10.3: The vanishing condition. If {an} is summable, if

+∞∑
n=0

an,

exists, then an → 0.
Proof: Since {an} is summable, the partial sums sn converge to a limit L. Let ε > 0.
Then there exists an integer N such that

n > N ⇒ |sn − L| < ε

2
.

Hence

|an+1| = |sn+1−sn| = |(sn+1−L)+(L−sn)| ≤ |sn+1−L|+|L−sn| <
ε

2
+
ε

2
= ε for all n > N.

Unfortunately, the vanishing condition is far from sufficient. For example,

lim
n→+∞

1

n
= 0

but the sequence {1/n} is not summable.

+∞∑
n=0

1

n

is called the harmonic series.
The harmonic series diverges, though on a computer it looks as though it conveges.
For example, to get the sum > 12, one needs 91,390 terms.

Example: Does
+∞∑
n=0

n

n− 1

converge?

No, as n
n−1

→ 1, the vanishing condition is not satisfied.
If some convergent sums are already available, one can often show convergence of other
sums by comparison.
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Theorem 10.4: (Comparison Test)

Suppose that 0 ≤ an ≤ bn for all n. Then if

+∞∑
n=0

bn

converges, so does
+∞∑
n=0

an.

Proof: Not given.

Theorem 10.5: (Comparison Test, divergence version)

Suppose that 0 ≤ an ≤ bn for all n. Then if

+∞∑
n=0

an

diverges, so does
+∞∑
n=0

bn.

Proof: Not given.
Quite frequently the comparison test can be used to analyse very complicated looking
series in which most of the complication is irrelevant.

10.2.1 Examples

(1)
+∞∑
n=0

2 + sin3(n+ 1)

2n + n2

converges, because

0 ≤ 2 + sin3(n+ 1)

2n + n2
<

3

2n

and
+∞∑
n=0

3

2n
= 3

+∞∑
n=0

1

2n

is a convergent (geometric) series.

(2)
+∞∑
n=0

2n + 5

3n + 4n
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converges, because

2n + 5

3n + 4n
≤ 2n + 2n

3n + 4n
≤ 2

2n

3n + 4n
≤ 2

2n

3n
= 2

(
2

3

)n

and
+∞∑
n=0

2

(
2

3

)n

= 2
+∞∑
n=0

(
2

3

)n

is a convergent (geometric) series.

Theorem 10.6: (Comparison Test, limit form)
If an, bn > 0 and

lim
n→+∞

an

bn
= c > 0,

then
+∞∑
n=0

an

and
+∞∑
n=0

bn

both converge, or both diverge to +∞.
Proof: Not given.

Example: Let

an =

√
n

n
3
2 + 1

.

Expect to behave like

bn =

√
n

n
3
2

=
1

n
.

As
an

bn
=

n
3
2

n
3
2 + 1

→ 1 6= 0

as n→ +∞ and
+∞∑
n=0

bn

diverges, it follows from Theorem 10.6 that

+∞∑
n=0

an

diverges.
The most important of all tests for summability is the Ratio Test.
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Theorem 10.7: Let an > 0 for all n and suppose that

lim
n→+∞

an+1

an

= r.

Then
+∞∑
n=0

an

converges if r < 1.
On the other hand, if r > 1, then the terms an do not approach 0, so

+∞∑
n=0

an

diverges to +∞.
Notice that it is therefore essential to compute

lim
n→+∞

an+1

an

and NOT lim
n→+∞

an

an+1

.

Proof: Not given.

10.2.2 Examples

(1) Consider the series
+∞∑
n=0

1

n!
.

Letting an = 1/n! we obtain

an+1

an

=
n!

(n+ 1)!
=

1

n+ 1
.

Thus
lim

n→+∞

an+1

an

= 0.

So by the Ratio Test
+∞∑
n=0

1

n!

converges.

(2) Consider now the series
+∞∑
n=0

rn

n!

where r > 0 is some fixed real number. Then letting an = rn/n! we obtain

an+1

an

=
n!

rn

rn+1

(n+ 1)!
=

r

n+ 1
,
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whence
lim

n→+∞

an+1

an

= 0.

So by the Ratio Test
+∞∑
n=0

rn

n!

converges. The vanishing condition yields

lim
n→+∞

rn

n!
= 0.

(3) Finally, consider the series
+∞∑
n=0

nrn.

We have
an+1

an

=
(n+ 1)rn+1

rnn
,

so that

lim
n→+∞

an+1

an

= lim
n→+∞

n+ 1

n
r = r, since lim

n→+∞

n+ 1

n
= 1.

This proves that if 0 ≤ r < 1, then

+∞∑
n=0

nrn

converges, and consequently
lim

n→+∞
nrn = 0.

Although the Ratio Test will be of the utmost importance as a practical tool it will be
frequently be found dissapointing as it appears with maddening regularity that

lim
n→+∞

an+1

an

= 1.

This case is precisely the one which is inconclusive.
For instance, if

an =

(
1

n

)2

then

lim
n→+∞

an+1

an

= lim
n→+∞

n2

(n+ 1)2
= 1.

In fact, our very next test will show that

+∞∑
n=0

(
1

n

)2

converges.
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Theorem 10.8: (The Integral Test)
Suppose that f is positive and decreasing on [1,+∞) (i.e., x ≤ y ⇒ f(x) ≥ f(y)), and
that f(n) = an for all n. Then

+∞∑
n=0

an

converges if and only if the limit∫ +∞

1

dx f(x) = lim
K→+∞

∫ K

1

dx f(x)

exists.
Proof: Not given.

Corollary 10.9: (The p-Test)
If p > 1, then

+∞∑
n=0

1

np

converges.
If 0 ≤ p ≤ 1, then

+∞∑
n=0

1

np

diverges.
Proof: Not given.

A test closely related to the ratio test is the Root Test. If we try to apply the ratio
test to the series

1

2
+

1

3
+

(
1

2

)2

+

(
1

3

)2

+

(
1

2

)3

+

(
1

3

)3

+ · · ·

it turns out that the ratios of consecutive terms do not approach a limit. Here the root
test works.

Theorem 10.10: (The Root Test)
Supppose that an ≥ 0 and

lim
n→+∞

n
√
an = s.

Then
+∞∑
n=0

an

converges if s < 1 and diverges if s > 1.
Proof: Not given.
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Proposition 10.11: If
+∞∑
n=0

an and
+∞∑
n=0

bn

converge, then

+∞∑
n=0

can and
+∞∑
n=0

(an + bn) and
+∞∑
n=0

(an − bn)

converge also. Moreover

+∞∑
n=0

can = c

+∞∑
n=0

an and
+∞∑
n=0

(an+bn) =
+∞∑
n=0

an+
+∞∑
n=0

bn and
+∞∑
n=0

(an−bn)
+∞∑
n=0

an−
+∞∑
n=0

bn.

Proof: Not given.

10.3 Examples

Investigate the convergence of the following series:

(a)
+∞∑
n=1

2n

5n+ 3

As
2n

5n+ 3
→ 2

5

the series diverges by the vanishing test.

(b)
+∞∑
n=0

5

(
1

4

)n

As
+∞∑
n=0

(
1

4

)n

=
1

1− 1
4

=
4

3

the series converges to 5 · 4
3

= 20
3
.

(c)
+∞∑
n=1

1√
n

Note that
1√
n
≥ 1

n
,
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so the series diverges by the Comparison Test.

(d)
+∞∑
n=1

sin

(
1

n

)
Here

sin
(

1
n

)
1
n

→ cos 0 = 1.

So by the limit version of the comparison test the series diverges.

(e)
+∞∑
n=1

2n− 1

(
√

2)n

Compute

an+1

an

=

2(n+1)−1

(
√

2)n+1

2n−1
(
√

2)n

=
2n+ 1√
2(2n− 1)

=
1√
2

2n+ 1

(2n− 1)
→ 1√

2
as n→ +∞.

So the series converges by the ratio test.

(f)
+∞∑
n=1

1

(2n+ 1)2 − 1

This series in convergent by the integral test:∫ +∞

1

dx
1

(2x+ 1)2 − 1
= lim

K→+∞

(
1

4
log

(
x

x+ 1

) ∣∣∣K
1

)
= −1

4
log

(
1

2

)
=

1

4
log 2.

(g)
+∞∑
n=1

n

n4 + 1

We have
n

n4 + 1
<

1

n3

and
+∞∑
n=1

1

n3

is convergent as it is a p-series with p = 3. We conclude that

+∞∑
n=1

n

n4 + 1
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is convergent by the Comparison Test.

(h)
+∞∑
n=1

3nn!

nn

We compute

an+1

an

=
3n+1(n+ 1)!

(n+ 1)n+1

nn

3nn!
=

3(n+ 1)nn

(n+ 1)n+1
= 3

nn

(n+ 1)n
= 3

(
n

n+ 1

)n

We have
n

n+ 1
=

1

1 + 1
n

.

As (
1

1 + 1
n

)n

→ e as n→ +∞

we conclude
an+1

an

= 3

(
n

n+ 1

)n

→ 3

e
>

3

2.8
> 1.

Thus, the series diverges by the ratio test.

(i)
+∞∑
n=1

2nn!

nn

We compute

an+1

an

=
2n+1(n+ 1)!

(n+ 1)n+1

nn

2nn!
=

2(n+ 1)nn

(n+ 1)n+1
= 2

nn

(n+ 1)n
= 2

(
n

n+ 1

)n

We have
n

n+ 1
=

1

1 + 1
n

.

As (
1

1 + 1
n

)n

→ e as n→ +∞

we conclude
an+1

an

= 2

(
n

n+ 1

)n

→ 2

e
<

2

2.7
< 1.

Thus, the series converges by the ratio test.

(j)
+∞∑
n=1

(
n+ 1

4n− 1

)n



98 10.4 Series with positive and negative terms

Let

an =

(
n+ 1

4n− 1

)n

.

Then

n
√
an =

n+ 1

4n− 1
=

1 + 1
n

4− 1
n

→ 1

4
.

Hence the series converges by the root test.

10.4 Series with positive and negative terms

The harmonic series
+∞∑
n=1

1

n

diverges. It will turn out, however, that the series

+∞∑
n=1

(−1)n 1

n
= −1 +

1

2
− 1

3
+

1

4
− 1

5
+

1

6
+ · · ·

converges. The latter series has positive and negative terms. Other examples for series
with positive and negative terms are the power series representations of sin and cos.

Definition 10.12: A series
+∞∑
n=0

an

converges absolutely (is absolutely convergent) if

+∞∑
n=0

|an|

converges.

10.4.1 Examples

(1) Every convergent series
+∞∑
n=0

an

with an ≥ 0 is absolutely convergent.

(2)
+∞∑
n=0

(−1)n 1

2n
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is absolutely convergent because
+∞∑
n=0

1

2n

is convergent.
Note that we have not assumed

+∞∑
n=0

an

to be convergent. This is not necessary, as the following result shows.

Proposition 10.13: If
+∞∑
n=1

an

is absolutely convergent, then
+∞∑
n=1

an

is convergent.
Proof: Not given.

10.4.2 Examples

(a) The series
+∞∑
n=1

(−1)n+1

n!

converges (absolutely).
Proof: We have

|an| =
1

n!
⇒ |an+1|

|an|
=

1

n+ 1
→ 0.

Thus the series
+∞∑
n=1

|an|

converges by the Ratio Test and hence

+∞∑
n=1

an

converges by Proposition 10.13.
(b) The series

+∞∑
n=0

(−1)n+1

n2

converges (absolutely).



100 10.4 Series with positive and negative terms

Proof: The ratio test does not work here as

|an| =
1

n2
⇒ |an+1|

|an|
=

n2

(n+ 1)2
→ 1.

But we have already shown that

+∞∑
n=1

|an| =
+∞∑
n=1

1

n2

converges by the p-test. Hence
+∞∑
n=1

an

converges by Proposition 10.13.
There are series which are convergent but not absolutely convergent (such series are
sometimes called conditionally convergent.

Leibniz’s Theorem 10.14: Supppose that

a1 ≥ a2 ≥ a3 ≥ . . . ≥ 0

and that

lim
n→+∞

an = 0.

Then, the series
+∞∑
n=1

(−1)n+1an

converges.
Proof: Not given.

10.4.3 Examples

(i)
+∞∑
n=1

(−1)n+1

n

Solution: Let an = 1/n. Then

a1 ≥ a2 ≥ a3 ≥ . . . ≥ 0

and

lim
n→+∞

an = 0.

So the series converges by Leibniz’s theorem.
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(ii)
+∞∑
n=1

(−1)n+1

(
n

2n+ 1

)
Solution: Let an = n/(2n+ 1). Then

lim
n→+∞

an =
1

2
,

this series does not converge due to the vanishing test.

(iii)
+∞∑
n=1

(−1)n+1

(
1

5

)n

Solution: Let an = (1/5)n. Clearly

a1 ≥ a2 ≥ a3 ≥ . . . ≥ 0

and
lim

n→+∞
an = 0.

So the series converges by Leibniz’s theorem. However, this series converges absolutely
too, using the ratio test.
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Chapter 11

Power series

Contents
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.2 Taylor and Maclaurin series . . . . . . . . . . . . . . . . . . 105

11.3 Taylor’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.1 Introduction

Definition 11.1: A power series about the point a is an expression of the form

a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · ·

in which the coefficients an of the power series are real numbers and x is a variable.

For any fixed numerical value of x this infinite series in powers of x− a will become an
infinite series of the type considered in the previous chapter, and so will either converge
or diverge. Thus a power series in x − a will define a function of x for all x in the
interval in which the series converges.

In terms of the summation notation we can write the power series as

+∞∑
n=0

an(x− a)n,

and if the function to which this infinite series converges is denoted by f(x), often
called its sum function, we may write

f(x) =
+∞∑
n=0

an(x− a)n.

The interval in which this power series will converge will depend on the coefficients an,
the point a about which the series is expanded and x itself.

103
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Theorem 11.2: For any power series

+∞∑
n=0

an(x− a)n = a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · ·

one of the following three possibilities must be true:

1. The sum
+∞∑
n=0

an(x− a)n

converges only for x = a.

2. The sum
+∞∑
n=0

an(x− a)n

converges absolutely for all x.

3. There is a number R > 0 such that

+∞∑
n=0

an(x− a)n

converges absolutely when |x− a| < R and diverges when |x− a| > R.

Notice that we do not mention what happens when |x− a| = R.

Proof: Not given. �

Definition 11.3: The number R which occurs in case (3) of 11.2 is called the
radius of converge of the sum

+∞∑
n=0

an(x− a)n.

In case (1) and (2) it is customary to say that the radius of convergence is 0 and +∞,
respectively.

When 0 < R < +∞, the interval (a−R, a+R) is called the interval of convergence.

11.1.1 Examples

(1)
∑+∞

n=0 n!(x− a)n (an = n!) converges only for x = a, for if x 6= a, then∣∣∣(n+ 1)!(x− a)n+1

n!(x− a)n

∣∣∣ = (n+ 1)|x− a| → +∞ as n→ +∞,

entailing divergence by the proof of the Ratio Test.
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(2)
∑+∞

n=0
(x−a)n

n!
(an = 1/n!) converges absolutely for all x ∈ R by the Ratio Test,

because ∣∣∣ (x−a)n+1

(n+1)!

∣∣∣∣∣∣ (x−a)n

n!

∣∣∣ =
|x− a|
n+ 1

→ 0.

(3) The radius of convergence of
+∞∑
n=0

(x− a)n

(here an = 1) is 1 by the Ratio Test since

lim
n→+∞

∣∣∣(x− a)n+1

(x− a)n

∣∣∣ = |x− a|.

11.2 Taylor and Maclaurin series

Many elementary functions can be defined via power series, e.g.,

ex =
+∞∑
n=0

xn

n!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+ · · ·

sin x =
+∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
=
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · ·

cosx =
+∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

and many nice functions have a power series expansion. To see this we need to know
how power series can be differentiated.

Theorem 11.4: If
+∞∑
n=0

anx
n

has radius R and sum f(x) (|x| < R), then the series

+∞∑
n=0

(n+ 1)an+1x
n =

+∞∑
n=1

nanx
n−1

obtained by differentiating
+∞∑
n=0

anx
n

term by term, also has radius R and sum f ′(x) (|x| < R).
Proof: Not given.
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11.2.1 Example

1 + x+ x2 + x3 + · · · = 1

1− x
(|x| < 1).

So

1 + 2x+ 3x2 + 4x3 + · · ·+ nxn−1 + · · · = 1

(1− x)2
(|x| < 1).

and

2 + 3 · 2x+ 4 · 3x2 + · · ·+ n(n− 1)xn−2 + · · · = 2

(1− x)3
(|x| < 1).

Here is a strategy for representing a given function in the form of a power series
expanded about a point a.

Suppose f is a function which may be differentiated arbitrarily many times at a. To
represent f(x) in the form of the power series

f(x) =
+∞∑
n=0

an(x− a)n,

we need to determine the coefficients an. Differentiating

f(x) =
+∞∑
n=0

an(x− a)n = a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · ·

term by term, we obtain

f ′(x) = f (1)(a) = a1 + 2a2(x− a) + 3a3(x− a)2 · · ·+ nan(x− a)n−1 + · · ·

and we can conclude that
f (1)(a) = a1.

Differentiating the series

a1 + 2a2(x− a) + 3a3(x− a)2 · · ·+ nan(x− a)n−1 + · · ·

we obtain

f (2)(x) = 2a2 + 3 · 2a3(x− a) + 4 · 3a4(x− a)2 · · ·+ n(n− 1)an(x− a)n−2 + · · ·

hence

a2 =
f (2)(a)

2!
.

Continuing in this way we get

an =
f (n)(a)

n!
for all n ≥ 0.
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Note that we also have
f (0)(a) = f(a) = a0

and by convention 0! = 1.

Substituting these coefficients into the original series gives

f(x) = f(a)+
f (1)(a)

1!
(x−a)+f (2)(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+· · · =

+∞∑
n=0

f (n)(a)

n!
(x−a)n.

Definition 11.5: This power series expansion of f is called the Taylor series expansion
of f about the point a.

When a = 0, the Taylor series expansion reduces to the Maclaurin series expansion of
f (a Maclaurin series is always an expansion about the origin).

11.2.2 Example

(1) Find the Maclaurin series expansion of sinx.
Solution: We have

sin(0)(0) = sin 0 = 0 ,

sin(1)(0) = cos 0 = 1 ,

sin(2)(0) = − sin 0 = 0 ,

sin(3)(0) = − cos 0 = −1 .

Thus, we see that sin(n)(0) = 0 if n is even, but that f (n)(0) alternates between 1 and
−1 when n is odd. Substituting the values of f (n)(0) into the general Maclaurin series
(a = 0) shows that the Maclaurin series for sinx is

sin x =
x

1!
− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · · =

+∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
.

(2) Find the Maclaurin series expansion of ex.
Solution: We set f(x) = ex and use the fact that f ′(x) = f(x), we find that

f (0)(0) = 1 ,

f (1)(0) = 1 ,

f (2)(0) = 1 ,

f (3)(0) = 1 .

Thus, we see that f (n)(0) = 1. Substituting the values of f (n)(0) into the general
Maclaurin series (a = 0) shows that the Maclaurin series for f is

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · · =

+∞∑
n=0

xn

n!
.
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Replacing x by −x we see that the Maclaurin series for e−x is

e−x = 1− x

1!
+
x2

2!
− x3

3!
+
x4

4!
+ · · · =

+∞∑
n=0

(−1)nx
n

n!
.

(3) Find the Maclaurin series expansion of g(x) = log(1 + x).
Solution: We have

g(0)(0) = 0 ,

g(1)(x) =
1

1 + x
, g(1)(0) = 1 ,

g(2)(x) =
−1

(1 + x)2
, g(2)(0) = −1 ,

g(3)(x) =
1 · 2

(1 + x)3
, g(3)(0) = 2 = 2! .

In general

g(n)(x) =
(−1)n+1(n− 1)!

(1 + x)n
, g(n)(0) = (−1)n+1(n− 1)!

for n = 1, 2, 3, · · · .
Thus, the Maclaurin series for g(x) is

g(x) = log(1 + x) =
x

1
− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n+1x

n

n
+ · · ·

11.2.3 Examples

(1) Find the Taylor series expansion of cos x about the point a.
Solution: Set f(x) = cosx. We have to compute the derivatives:

f (0)(a) = cos a ,

f (1)(x) = − sin x, f (1)(a) = − sin a ,

f (2)(x) = − cosx, f (2)(a) = − cos a ,

f (3)(x) = sin x, f (3)(a) = sin a .

Hereafter, further differentiation simply repeats this pattern of coefficients. Thus the
Taylor series expansion of cos x about the point a is

cosx = cos a− sin a

1!
(x− a)− cos a

2!
(x− a)2 +

sin a

3!
(x− a)3 +

cos a

4!
(x− a)4 − · · ·

= cos a
+∞∑
n=0

(−1)n(x− a)2n 1

(2n)!
− sin a

+∞∑
n=0

(−1)n(x− a)2n+1 1

(2n+ 1)!

as the series can be shown to be absolutely convergent. Absolutely convergence entails
that we may rearrange terms without altering its sum.
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As a special case, by setting a = 0, we obtain from this the Maclaurin series expansion
of cosx

cosx =
+∞∑
n=0

(−1)nx2n 1

(2n)!
.

(2) Find the Taylor series expansion of f(x) = (2 + x)
−1
2 about the point a = 1.

Solution:
Set f(x) = (2 + x)−

1
2 =

(
1

2+x

) 1
2 . We must set a = 1 and then compute the derivatives:

f (0)(x) = f(x) =

(
1

2 + x

) 1
2

, so f (0)(1) =

(
1

3

) 1
2

,

f (1)(x) = −1

2
·
(

1

2 + x

) 3
2

, so f (1)(1) = −1

2

(
1

3

) 3
2

,

f (2)(x) =
1

2
· 3

2

(
1

2 + x

) 5
2

, so f (2)(1) =
1 · 3
22

(
1

3

) 5
2

,

f (3)(x) = −1

2
· 3

2
· 5

2

(
1

2 + x

) 7
2

, so f (3)(1) = −1 · 3 · 5
23

(
1

3

) 7
2

.

Hereafter, inspection of the general pattern of the results shows that

f (n)(1) = (−1)n 1 · 3 · 5 · · · · (2n− 1)

2n

(
1

3

) (2n+1)
2

.

Substituting the values for f (n)(1) into the general form of the Taylor series and setting

a = 1, shows that the required Taylor series expansion of (2 + x)−
1
2 about the point 1

is (
1

2 + x

) 1
2

=

(
1

3

) 1
2

− 1

2

(
1

3

) 3
2 (x− 1)

1!
+

1 · 3
22

(
1

3

) 5
2 (x− 1)2

2!

−1 · 3 · 5
23

(
1

3

) 7
2 (x− 1)3

3!
+ · · ·+ (−1)n 1 · 3 · 5 · · · · (2n− 1)

2n

(
1

3

) (2n+1)
2

.
(x− 1)n

n!
+ · · · .

So far, our development of functions in terms of Taylor and Maclaurin series has been
formal, in the sense that although we now know how to relate a power series to a given
function, we have not actually proved that the function and its series are equal.

The connection is known as Taylor’s theorem.

11.3 Taylor’s theorem

Taylor’s theorem If f is differentiable n times on an open interval I and f (n) is
continuous on I and a ∈ I, then f(x) can be written

f(x) = f(a)+
f (1)(a)

1!
(x−a)+f

(2)(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+· · ·+f

(n−1)(a)

(n− 1)!
(x−a)n−1+Rn(x)
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for all x ∈ I, where the remainder term is

Rn(x) =
f (n)(ξ)

n!
(x− a)n,

with ξ some number between a and x.

The above result reduces to the corresponding Maclaurin series expansion and remain-
der term when x = 0 .
Proof: Not given.

The polynomial

Tn(x) = f(a)+
f (1)(a)

1!
(x−a)+

f (2)(a)

2!
(x−a)2 +

f (3)(a)

3!
(x−a)3 + · · ·+ f (n)(a)

n!
(x−a)n

is called the Taylor polynomial of degree n obtained when f is expanded about the
point a.

Corollary: If f is differentiable infinitely many times on an open interval I and
a, x ∈ I and

lim
n→+∞

Rn(x) = 0,

then

f(x) = f(a)+
f (1)(a)

1!
(x−a)+f (2)(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+· · ·+f (n)(a)

n!
(x−a)n+· · ·

=
+∞∑
n=0

f (n)(a)

n!
(x− a)n.

Proof: Not given.

11.3.1 Example

Find the Taylor polynomial of degree 3 which approximates the function e−x/2 when
the expansion is about the point a = 1. Determine the magnitude of the error involved
when x is in the interval −2 ≤ x ≤ 2, i.e., R4(x).
Solution: We set f(x) = e−x/2 and a = 1. Then, we have

f (0)(x) = e−x/2, f (0)(1) = e
−1
2 ,

f (1)(x) = −1

2
e−x/2, f (1)(1) = −1

2
e
−1
2 ,

f (2)(x) =
1

22
e−x/2, f (2)(1) =

1

4
e
−1
2 ,

f (3)(x) = − 1

23
e−x/2, f (3)(1) = −1

8
e
−1
2 ,

f (4)(x) =
1

24
e−x/2 .
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Thus the Taylor polynomial of degree 3 about the point a = 1 is

T3(x) = e
−1
2 − 1

2
e
−1
2 (x− 1) +

1

8
e
−1
2 (x− 1)2 − e

−1
2

1

48
(x− 1)3.

and the remainder is

R4(x) =
f (4)(ξ)

4!
(x− 1)4 =

1

16
e−ξ/2 (x− 1)4

4!

with ξ some number between 1 and x. in the interval ξ ∈ [−2, 2] and ξ 6= 1.

To estimate the magnitude of the error made when e−x/2 is represented by T3(x) with
−2 ≤ x ≤ 2, we proceed as follows. The function e−x/2 is a strictly decreasing function
of x, so on the interval −2 ≤ x ≤ 2 its maximum value occurs at the left end point
of the interval where it equals e. The maximum value of the non-negative function
(x − 1)4 on the interval −2 ≤ x ≤ 2, occurs at the left end point at which it equals
(−3)4 = 81. Thus, we have the estimate

R4(x) ≤
e

16 · 4!
· 81 = 0.57339.


